Giles Dixon, Hannah Thould, Matthew Wells, Krasimira Tsaneva-Atanasova, Chris J Scotton, Michael A Gibbons, Shaney L Barratt, Jonathan C L Rodrigues
{"title":"A systematic review of the role of quantitative CT in the prognostication and disease monitoring of interstitial lung disease.","authors":"Giles Dixon, Hannah Thould, Matthew Wells, Krasimira Tsaneva-Atanasova, Chris J Scotton, Michael A Gibbons, Shaney L Barratt, Jonathan C L Rodrigues","doi":"10.1183/16000617.0194-2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The unpredictable trajectory and heterogeneity of interstitial lung disease (ILDs) make prognostication challenging. Current prognostic indices and outcome measures have several limitations. Quantitative computed tomography (qCT) provides automated numerical assessment of CT imaging and has shown promise when applied to the prognostication and disease monitoring of ILD. This systematic review aims to highlight the current evidence underpinning the prognostic value of qCT in predicting outcomes in ILD.</p><p><strong>Methods: </strong>A comprehensive search of four databases (Medline, EMCare, Embase and CINAHL (Cumulative Index to Nursing and Allied Health Literature)) was conducted for studies published up to and including 22 November 2024. A modified CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) checklist was used for data extraction. The risk of bias was assessed using a Quality in Prognostic Studies template.</p><p><strong>Results: </strong>The search identified 1134 unique studies, of which 185 studies met inclusion and exclusion criteria. Commonly studied ILD subtypes included idiopathic pulmonary fibrosis (41%, n=75), mixed subtypes (26%, n=48) and systemic sclerosis ILD (16%, n=30). Numerous studies showed significant prognostic signals, even when adjusted for common covariates and/or significant correlation between serial qCT biomarkers and conventional outcome measures. Heterogenous and nonstandardised reporting methods meant that direct comparison or meta-analysis of studies was not possible. Studies were limited by the use of retrospective methodology without prospective validation and significant study attrition.</p><p><strong>Discussion: </strong>qCT has shown efficacy in the prognostication and disease monitoring of a range of ILDs. Hurdles exist to widespread adoption including governance concerns, appropriate algorithm anchoring and standardisation of image acquisition. International collaboration is underway to address these hurdles, paving the way for regulatory approval and ultimately patient benefit.</p>","PeriodicalId":12166,"journal":{"name":"European Respiratory Review","volume":"34 176","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Respiratory Review","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1183/16000617.0194-2024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The unpredictable trajectory and heterogeneity of interstitial lung disease (ILDs) make prognostication challenging. Current prognostic indices and outcome measures have several limitations. Quantitative computed tomography (qCT) provides automated numerical assessment of CT imaging and has shown promise when applied to the prognostication and disease monitoring of ILD. This systematic review aims to highlight the current evidence underpinning the prognostic value of qCT in predicting outcomes in ILD.
Methods: A comprehensive search of four databases (Medline, EMCare, Embase and CINAHL (Cumulative Index to Nursing and Allied Health Literature)) was conducted for studies published up to and including 22 November 2024. A modified CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) checklist was used for data extraction. The risk of bias was assessed using a Quality in Prognostic Studies template.
Results: The search identified 1134 unique studies, of which 185 studies met inclusion and exclusion criteria. Commonly studied ILD subtypes included idiopathic pulmonary fibrosis (41%, n=75), mixed subtypes (26%, n=48) and systemic sclerosis ILD (16%, n=30). Numerous studies showed significant prognostic signals, even when adjusted for common covariates and/or significant correlation between serial qCT biomarkers and conventional outcome measures. Heterogenous and nonstandardised reporting methods meant that direct comparison or meta-analysis of studies was not possible. Studies were limited by the use of retrospective methodology without prospective validation and significant study attrition.
Discussion: qCT has shown efficacy in the prognostication and disease monitoring of a range of ILDs. Hurdles exist to widespread adoption including governance concerns, appropriate algorithm anchoring and standardisation of image acquisition. International collaboration is underway to address these hurdles, paving the way for regulatory approval and ultimately patient benefit.
期刊介绍:
The European Respiratory Review (ERR) is an open-access journal published by the European Respiratory Society (ERS), serving as a vital resource for respiratory professionals by delivering updates on medicine, science, and surgery in the field. ERR features state-of-the-art review articles, editorials, correspondence, and summaries of recent research findings and studies covering a wide range of topics including COPD, asthma, pulmonary hypertension, interstitial lung disease, lung cancer, tuberculosis, and pulmonary infections. Articles are published continuously and compiled into quarterly issues within a single annual volume.