Yuqi Gu, Elena A Erosheva, Gongjun Xu, David B Dunson
{"title":"Dimension-Grouped Mixed Membership Models for Multivariate Categorical Data.","authors":"Yuqi Gu, Elena A Erosheva, Gongjun Xu, David B Dunson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying, estimating, and interpreting the parameters. In this article, we propose a new class of <i>Dimension-Grouped</i> MMMs ( <math><mrow><mtext>Gro-</mtext> <msup><mtext>M</mtext> <mn>3</mn></msup> <mtext>s</mtext></mrow> </math> ) for multivariate categorical data, which improve parsimony and interpretability. In <math><mrow><mtext>Gro-</mtext> <msup><mtext>M</mtext> <mn>3</mn></msup> <mtext>s</mtext></mrow> </math> , observed variables are partitioned into groups such that the latent membership is constant for variables within a group but can differ across groups. Traditional latent class models are obtained when all variables are in one group, while traditional MMMs are obtained when each variable is in its own group. The new model corresponds to a novel decomposition of probability tensors. Theoretically, we derive transparent identifiability conditions for both the unknown grouping structure and model parameters in general settings. Methodologically, we propose a Bayesian approach for Dirichlet <math><mrow><mtext>Gro-</mtext> <msup><mtext>M</mtext> <mn>3</mn></msup> <mtext>s</mtext></mrow> </math> to inferring the variable grouping structure and estimating model parameters. Simulation results demonstrate good computational performance and empirically confirm the identifiability results. We illustrate the new methodology through applications to a functional disability survey dataset and a personality test dataset.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"24 ","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying, estimating, and interpreting the parameters. In this article, we propose a new class of Dimension-Grouped MMMs ( ) for multivariate categorical data, which improve parsimony and interpretability. In , observed variables are partitioned into groups such that the latent membership is constant for variables within a group but can differ across groups. Traditional latent class models are obtained when all variables are in one group, while traditional MMMs are obtained when each variable is in its own group. The new model corresponds to a novel decomposition of probability tensors. Theoretically, we derive transparent identifiability conditions for both the unknown grouping structure and model parameters in general settings. Methodologically, we propose a Bayesian approach for Dirichlet to inferring the variable grouping structure and estimating model parameters. Simulation results demonstrate good computational performance and empirically confirm the identifiability results. We illustrate the new methodology through applications to a functional disability survey dataset and a personality test dataset.
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.