{"title":"Deep learning-based automatic cranial implant design through direct defect shape prediction and its comparison study.","authors":"Afaque Rafique Memon, Haochen Shi, Tarique Rafique Memon, Jan Egger, Xiaojun Chen","doi":"10.1007/s11517-025-03363-5","DOIUrl":null,"url":null,"abstract":"<p><p>Defects to human crania are one kind of head bone damages, and cranial implants can be used to repair the defected crania. The automation of the implant design process is crucial in reducing the corresponding therapy time. Taking the cranial implant design problem as a special kind of shape completion task, an automatic cranial implant design workflow is proposed, which consists of a deep neural network for the direct shape prediction of the missing part of the defective cranium and conventional post-processing steps to refine the automatically generated implant. To evaluate the proposed workflow, we employ cross-validation and report an average Dice Similarity Score and boundary Dice Similarity Score of 0.81 and 0.81, respectively. We also measure the surface distance error using the 95th quantile of the Hausdorff Distance, which yields an average of 3.01 mm. Comparison with the manual cranial implant design procedure also revealed the convenience of the proposed workflow. In addition, a plugin is developed for 3D Slicer, which implements the proposed automatic cranial implant design workflow and can facilitate the end-users.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03363-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Defects to human crania are one kind of head bone damages, and cranial implants can be used to repair the defected crania. The automation of the implant design process is crucial in reducing the corresponding therapy time. Taking the cranial implant design problem as a special kind of shape completion task, an automatic cranial implant design workflow is proposed, which consists of a deep neural network for the direct shape prediction of the missing part of the defective cranium and conventional post-processing steps to refine the automatically generated implant. To evaluate the proposed workflow, we employ cross-validation and report an average Dice Similarity Score and boundary Dice Similarity Score of 0.81 and 0.81, respectively. We also measure the surface distance error using the 95th quantile of the Hausdorff Distance, which yields an average of 3.01 mm. Comparison with the manual cranial implant design procedure also revealed the convenience of the proposed workflow. In addition, a plugin is developed for 3D Slicer, which implements the proposed automatic cranial implant design workflow and can facilitate the end-users.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).