Promoting cooperation in the voluntary prisoner's dilemma game via reinforcement learning.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-04-01 DOI:10.1063/5.0267846
Yijie Huang, Yanhong Chen
{"title":"Promoting cooperation in the voluntary prisoner's dilemma game via reinforcement learning.","authors":"Yijie Huang, Yanhong Chen","doi":"10.1063/5.0267846","DOIUrl":null,"url":null,"abstract":"<p><p>Reinforcement learning technology has been empirically demonstrated to facilitate cooperation in game models. However, traditional research has primarily focused on two-strategy frameworks (cooperation and defection), which inadequately captures the complexity of real-world scenarios. To address this limitation, we integrated Q-learning into the prisoner's dilemma game, incorporating three strategies: cooperation, defection, and going it alone. We defined each agent's state based on the number of neighboring agents opting for cooperation and included social payoff in the Q-table update process. Numerical simulations indicate that this framework significantly enhances cooperation and average payoff as the degree of social-attention increases. This phenomenon occurs because social payoff enables individuals to move beyond narrow self-interest and consider broader social benefits. Additionally, we conducted a thorough analysis of the mechanisms underlying this enhancement of cooperation.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0267846","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforcement learning technology has been empirically demonstrated to facilitate cooperation in game models. However, traditional research has primarily focused on two-strategy frameworks (cooperation and defection), which inadequately captures the complexity of real-world scenarios. To address this limitation, we integrated Q-learning into the prisoner's dilemma game, incorporating three strategies: cooperation, defection, and going it alone. We defined each agent's state based on the number of neighboring agents opting for cooperation and included social payoff in the Q-table update process. Numerical simulations indicate that this framework significantly enhances cooperation and average payoff as the degree of social-attention increases. This phenomenon occurs because social payoff enables individuals to move beyond narrow self-interest and consider broader social benefits. Additionally, we conducted a thorough analysis of the mechanisms underlying this enhancement of cooperation.

通过强化学习促进自愿囚徒困境博弈中的合作。
强化学习技术已被实证证明可以促进博弈模型中的合作。然而,传统的研究主要集中在两种策略框架(合作和背叛)上,这不足以捕捉到现实世界场景的复杂性。为了解决这一限制,我们将Q-learning整合到囚徒困境游戏中,结合了三种策略:合作、背叛和单干。我们根据选择合作的相邻代理的数量定义每个代理的状态,并在q表更新过程中包含社会收益。数值模拟表明,随着社会关注程度的增加,该框架显著提高了合作和平均收益。之所以会出现这种现象,是因为社会回报使个人能够超越狭隘的自身利益,考虑更广泛的社会利益。此外,我们还对加强合作的机制进行了深入分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信