Identification of GALNT12 as a Novel Potential Diagnostic and Prognostic Marker for Esophageal Squamous Cell Carcinoma by Integrated Bioinformatics Analysis.

IF 3 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Digestion Pub Date : 2025-05-07 DOI:10.1159/000546092
Zhaowei Chen, Lili Kang, Zhenze Yang, Yaoqing Cai, Shuyong Yu, Ping Li, Jian Song
{"title":"Identification of GALNT12 as a Novel Potential Diagnostic and Prognostic Marker for Esophageal Squamous Cell Carcinoma by Integrated Bioinformatics Analysis.","authors":"Zhaowei Chen, Lili Kang, Zhenze Yang, Yaoqing Cai, Shuyong Yu, Ping Li, Jian Song","doi":"10.1159/000546092","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Esophageal squamous cell carcinoma (ESCC) is a highly fatal cancer with unclear molecular underpinnings. This study utilized bioinformatics to uncover key genes and pathways associated with ESCC and to identify prognostic markers.</p><p><strong>Methods: </strong>We identified the differentially expressed genes (DEGs) using three datasets (GSE53625, GSE67269, and GSE23400-GPL96). Meanwhile, Weighted gene co-expression network analysis (WGCNA) constructed gene co-expression networks based on the GSE23400-GLP97 dataset. Machine-learning algorithms further identified the most critical genes. Additionally, we validated the expression and diagnostic potential of the hub genes using the GSE161533 and GSE38129 datasets. Survival analysis and Gene Set Enrichment Analysis (GSEA) revealed the prognostic value and potential functions of the hub genes, respectively.</p><p><strong>Results: </strong>The study identified 240 DGEs (103 upregulated and 137 downregulated). Concurrently, WGCNA pinpointed 209 genes associated with ESCC. Subsequently, machine-learning algorithms identify four hub genes, including KIF14, GALNT12, MGLL, and EMP1. Moreover, their expression differences and potential as diagnostic biomarkers for ESCC were validated. Survival analysis indicated that elevated GALNT12 expression was associated with a poor prognosis of ESCC patients. GSEA delineated the involvement of GALNT12 in critical biological pathways.</p><p><strong>Conclusions: </strong>Our results identified GALNT12 as a novel potential diagnostic and prognostic marker for ESCC.</p>","PeriodicalId":11315,"journal":{"name":"Digestion","volume":" ","pages":"1-18"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digestion","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000546092","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Esophageal squamous cell carcinoma (ESCC) is a highly fatal cancer with unclear molecular underpinnings. This study utilized bioinformatics to uncover key genes and pathways associated with ESCC and to identify prognostic markers.

Methods: We identified the differentially expressed genes (DEGs) using three datasets (GSE53625, GSE67269, and GSE23400-GPL96). Meanwhile, Weighted gene co-expression network analysis (WGCNA) constructed gene co-expression networks based on the GSE23400-GLP97 dataset. Machine-learning algorithms further identified the most critical genes. Additionally, we validated the expression and diagnostic potential of the hub genes using the GSE161533 and GSE38129 datasets. Survival analysis and Gene Set Enrichment Analysis (GSEA) revealed the prognostic value and potential functions of the hub genes, respectively.

Results: The study identified 240 DGEs (103 upregulated and 137 downregulated). Concurrently, WGCNA pinpointed 209 genes associated with ESCC. Subsequently, machine-learning algorithms identify four hub genes, including KIF14, GALNT12, MGLL, and EMP1. Moreover, their expression differences and potential as diagnostic biomarkers for ESCC were validated. Survival analysis indicated that elevated GALNT12 expression was associated with a poor prognosis of ESCC patients. GSEA delineated the involvement of GALNT12 in critical biological pathways.

Conclusions: Our results identified GALNT12 as a novel potential diagnostic and prognostic marker for ESCC.

通过综合生物信息学分析鉴定GALNT12作为食管鳞状细胞癌新的潜在诊断和预后标志物。
背景:食管鳞状细胞癌(ESCC)是一种高致死率的癌症,其分子基础尚不清楚。本研究利用生物信息学揭示与ESCC相关的关键基因和途径,并确定预后标志物。方法:使用三个数据集(GSE53625、GSE67269和GSE23400-GPL96)鉴定差异表达基因(deg)。同时,加权基因共表达网络分析(Weighted gene共表达network analysis, WGCNA)基于GSE23400-GLP97数据集构建基因共表达网络。机器学习算法进一步确定了最关键的基因。此外,我们使用GSE161533和GSE38129数据集验证了枢纽基因的表达和诊断潜力。生存分析和基因集富集分析(GSEA)分别揭示了枢纽基因的预后价值和潜在功能。结果:共鉴定出240个基因(103个上调,137个下调)。同时,WGCNA确定了209个与ESCC相关的基因。随后,机器学习算法确定了四个中心基因,包括KIF14、GALNT12、MGLL和EMP1。此外,验证了它们的表达差异和作为ESCC诊断生物标志物的潜力。生存分析显示GALNT12表达升高与ESCC患者预后不良相关。GSEA描述了GALNT12参与关键的生物学途径。结论:我们的研究结果确定GALNT12是ESCC的一种新的潜在诊断和预后指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digestion
Digestion 医学-胃肠肝病学
CiteScore
7.90
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: ''Digestion'' concentrates on clinical research reports: in addition to editorials and reviews, the journal features sections on Stomach/Esophagus, Bowel, Neuro-Gastroenterology, Liver/Bile, Pancreas, Metabolism/Nutrition and Gastrointestinal Oncology. Papers cover physiology in humans, metabolic studies and clinical work on the etiology, diagnosis, and therapy of human diseases. It is thus especially cut out for gastroenterologists employed in hospitals and outpatient units. Moreover, the journal''s coverage of studies on the metabolism and effects of therapeutic drugs carries considerable value for clinicians and investigators beyond the immediate field of gastroenterology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信