FunDa: scalable serverless data analytics and in situ query processing.

IF 8.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Journal of Big Data Pub Date : 2025-01-01 Epub Date: 2025-05-09 DOI:10.1186/s40537-025-01141-6
Elyes Lounissi, Suvam Kumar Das, Ronnit Peter, Xiaozheng Zhang, Suprio Ray, Lianyin Jia
{"title":"<i>F</i>u<i>n</i>Da: scalable serverless data analytics and in situ query processing.","authors":"Elyes Lounissi, Suvam Kumar Das, Ronnit Peter, Xiaozheng Zhang, Suprio Ray, Lianyin Jia","doi":"10.1186/s40537-025-01141-6","DOIUrl":null,"url":null,"abstract":"<p><p>The pay-what-you-use model of serverless Cloud computing (or serverless, for short) offers significant benefits to the users. This computing paradigm is ideal for short running ephemeral tasks, however, it is not suitable for stateful long running tasks, such as complex data analytics and query processing. We propose <i>F</i>u<i>n</i>Da, an on-premises serverless data analytics framework, which extends our previously proposed system for unified data analytics and in situ SQL query processing called DaskDB. Unlike existing serverless solutions, which struggle with stateful and long running data analytics tasks, <i>F</i>u<i>n</i>Da overcomes their limitations. Our ongoing research focuses on developing a robust architecture for <i>F</i>u<i>n</i>Da, enabling true serverless in on-premises environments, while being able to operate on a public Cloud, such as AWS Cloud. We have evaluated our system on several benchmarks with different scale factors. Our experimental results in both on-premises and AWS Cloud settings demonstrate <i>F</i>u<i>n</i>Da's ability to support automatic scaling, low-latency execution of data analytics workloads, and more flexibility to serverless users.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"12 1","pages":"116"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-025-01141-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The pay-what-you-use model of serverless Cloud computing (or serverless, for short) offers significant benefits to the users. This computing paradigm is ideal for short running ephemeral tasks, however, it is not suitable for stateful long running tasks, such as complex data analytics and query processing. We propose FunDa, an on-premises serverless data analytics framework, which extends our previously proposed system for unified data analytics and in situ SQL query processing called DaskDB. Unlike existing serverless solutions, which struggle with stateful and long running data analytics tasks, FunDa overcomes their limitations. Our ongoing research focuses on developing a robust architecture for FunDa, enabling true serverless in on-premises environments, while being able to operate on a public Cloud, such as AWS Cloud. We have evaluated our system on several benchmarks with different scale factors. Our experimental results in both on-premises and AWS Cloud settings demonstrate FunDa's ability to support automatic scaling, low-latency execution of data analytics workloads, and more flexibility to serverless users.

FunDa:可扩展的无服务器数据分析和原位查询处理。
无服务器云计算(简称无服务器)的按需付费模式为用户提供了显著的好处。这种计算范式非常适合短时间运行的临时任务,但是,它不适合有状态的长时间运行任务,例如复杂的数据分析和查询处理。我们提出FunDa,这是一个内部部署的无服务器数据分析框架,它扩展了我们之前提出的统一数据分析和原位SQL查询处理系统,称为DaskDB。与现有的无服务器解决方案不同,FunDa克服了它们的局限性,这些解决方案都在努力处理有状态和长时间运行的数据分析任务。我们正在进行的研究重点是为FunDa开发一个强大的架构,在内部部署环境中实现真正的无服务器,同时能够在公共云(如AWS云)上运行。我们用不同的尺度因子在几个基准上评估了我们的系统。我们在本地和AWS云设置中的实验结果表明,FunDa能够支持自动扩展,低延迟执行数据分析工作负载,并为无服务器用户提供更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Big Data
Journal of Big Data Computer Science-Information Systems
CiteScore
17.80
自引率
3.70%
发文量
105
审稿时长
13 weeks
期刊介绍: The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信