Da-Wei Wei, Yuqin Song, Yi Li, Gang Zhang, Qi Chen, Linhuan Wu, Jiangqing Huang, Xueru Tian, Chao Wang, Jie Feng
{"title":"Insertion sequences accelerate genomic convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae via capsular phase variation.","authors":"Da-Wei Wei, Yuqin Song, Yi Li, Gang Zhang, Qi Chen, Linhuan Wu, Jiangqing Huang, Xueru Tian, Chao Wang, Jie Feng","doi":"10.1186/s13073-025-01474-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The convergence of resistance and hypervirulence in Klebsiella pneumoniae represents a significant public health threat, driven by the horizontal transfer of plasmids. Understanding factors affecting plasmid transfer efficiency is essential to elucidate mechanisms behind emergence of these formidable pathogens.</p><p><strong>Methods: </strong>Hypermucoviscous K. pneumoniae strains were serially passaged in LB medium to investigate capsule-deficient phenotypes. Capsule-deficient mutants were analyzed using genetic sequencing to identify the types and insertion sites of insertion sequences (IS). Bioinformatics and statistical analyses based on the NCBI and National Microbiology Data Center (NMDC) database were used to map the origins and locations of IS elements. Conjugation assays were performed to assess plasmid transfer efficiency between encapsulated and capsule-deficient strains. A murine intestinal colonization model was employed to evaluate virulence levels and IS excision-mediated capsule restoration.</p><p><strong>Results: </strong>Our research revealed that a hypervirulent K. pneumoniae (hvKP) strain acquired a bla<sub>NDM-1</sub>-bearing IncX3 plasmid with IS5 and ISKox3 elements. These IS elements are capable of inserting into capsular polysaccharide synthesis genes, causing a notably high frequency of capsule loss in vitro. The IS-mediated capsular phase variation, whether occurring in the donor or recipient strain, significantly increased the conjugation frequency of both the resistance plasmid and the virulence plasmid. Additionally, capsular phase variation enhanced bacterial adaptability in vitro. Experiments in mouse models demonstrated that capsule-deficient mutants exhibited reduced virulence and colonization capacity. However, during long-term intestinal colonization, IS element excision restored capsule expression, leading to the recovery of hypervirulence and enhanced colonization efficiency.</p><p><strong>Conclusions: </strong>Our findings reveal that IS elements mediate capsular phase variation by toggling gene activity, accelerating the genomic convergence of multidrug resistance and hypervirulence in K. pneumoniae, as well as facilitating adaptive transitions in different environments.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"45"},"PeriodicalIF":10.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01474-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The convergence of resistance and hypervirulence in Klebsiella pneumoniae represents a significant public health threat, driven by the horizontal transfer of plasmids. Understanding factors affecting plasmid transfer efficiency is essential to elucidate mechanisms behind emergence of these formidable pathogens.
Methods: Hypermucoviscous K. pneumoniae strains were serially passaged in LB medium to investigate capsule-deficient phenotypes. Capsule-deficient mutants were analyzed using genetic sequencing to identify the types and insertion sites of insertion sequences (IS). Bioinformatics and statistical analyses based on the NCBI and National Microbiology Data Center (NMDC) database were used to map the origins and locations of IS elements. Conjugation assays were performed to assess plasmid transfer efficiency between encapsulated and capsule-deficient strains. A murine intestinal colonization model was employed to evaluate virulence levels and IS excision-mediated capsule restoration.
Results: Our research revealed that a hypervirulent K. pneumoniae (hvKP) strain acquired a blaNDM-1-bearing IncX3 plasmid with IS5 and ISKox3 elements. These IS elements are capable of inserting into capsular polysaccharide synthesis genes, causing a notably high frequency of capsule loss in vitro. The IS-mediated capsular phase variation, whether occurring in the donor or recipient strain, significantly increased the conjugation frequency of both the resistance plasmid and the virulence plasmid. Additionally, capsular phase variation enhanced bacterial adaptability in vitro. Experiments in mouse models demonstrated that capsule-deficient mutants exhibited reduced virulence and colonization capacity. However, during long-term intestinal colonization, IS element excision restored capsule expression, leading to the recovery of hypervirulence and enhanced colonization efficiency.
Conclusions: Our findings reveal that IS elements mediate capsular phase variation by toggling gene activity, accelerating the genomic convergence of multidrug resistance and hypervirulence in K. pneumoniae, as well as facilitating adaptive transitions in different environments.
期刊介绍:
Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.