{"title":"Understanding epigenetic regulation in the endometrium - lessons from mouse models with implantation defects.","authors":"Ryosuke Kobayashi, Izuho Hatada","doi":"10.1080/17501911.2025.2491298","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial function, crucial for successful embryo implantation, is significantly influenced by epigenetic regulation. This review investigates the crucial roles of DNA methylation, histone modifications, chromatin remodeling, and RNA methylation in endometrial receptivity and implantation, based on a survey of recent literature on knockout mouse models with implantation defects. These models illuminate how epigenetic disruptions contribute to implantation failure, a significant human reproductive health concern. DNA methylation and histone modifications modulate endometrial receptivity by affecting gene silencing and chromatin structure, respectively. Chromatin remodeling factors also play a critical role in endometrial dynamics, influencing gene expression. Furthermore, RNA methylation emerges as critical in implantation through transcriptional and translational control. While human studies provide limited epigenetic snapshots, mouse models with suppressed epigenetic regulators reveal direct causal links between epigenetic alterations and implantation failure. Understanding these epigenetic interactions offers potential for novel therapies addressing reproductive disorders.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"541-554"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2491298","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Endometrial function, crucial for successful embryo implantation, is significantly influenced by epigenetic regulation. This review investigates the crucial roles of DNA methylation, histone modifications, chromatin remodeling, and RNA methylation in endometrial receptivity and implantation, based on a survey of recent literature on knockout mouse models with implantation defects. These models illuminate how epigenetic disruptions contribute to implantation failure, a significant human reproductive health concern. DNA methylation and histone modifications modulate endometrial receptivity by affecting gene silencing and chromatin structure, respectively. Chromatin remodeling factors also play a critical role in endometrial dynamics, influencing gene expression. Furthermore, RNA methylation emerges as critical in implantation through transcriptional and translational control. While human studies provide limited epigenetic snapshots, mouse models with suppressed epigenetic regulators reveal direct causal links between epigenetic alterations and implantation failure. Understanding these epigenetic interactions offers potential for novel therapies addressing reproductive disorders.
期刊介绍:
Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community.
Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.