Impact of discrepancies between CT numbers of brain-tissue-equivalent density plug and actual brain tissue on dose calculation accuracy.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Shogo Tsunemine, Shuichi Ozawa, Minoru Nakao, Satoru Sugimoto, Tetsuya Tomida, Michitoshi Ito, Masumi Numano, Hideyuki Harada
{"title":"Impact of discrepancies between CT numbers of brain-tissue-equivalent density plug and actual brain tissue on dose calculation accuracy.","authors":"Shogo Tsunemine, Shuichi Ozawa, Minoru Nakao, Satoru Sugimoto, Tetsuya Tomida, Michitoshi Ito, Masumi Numano, Hideyuki Harada","doi":"10.1007/s12194-025-00908-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study quantitatively evaluated the impact of differences in computed tomography (CT) numbers and elemental compositions between commercially available brain-tissue-equivalent density plugs (BDPs) and actual brain tissue on dose calculations in a radiation therapy treatment planning system (RTPS). The mass density and elemental composition of BDP were analyzed using elemental analysis and X-ray fluorescence spectroscopy. The CT numbers of the BDP and actual brain tissue were measured and compared, with effective atomic numbers (EANs) calculated based on compositional analysis and the International Commission on Radiological Protection Publication 110 data for brain tissues. The theoretical CT numbers were derived using the stoichiometric CT number calibration (SCC) method. The dose calculations were performed using the modified CT number-to-relative electron density (RED) and mass density (MD) conversion tables in Eclipse v16.1, employing AAA and Acuros XB algorithms, employing the physical material table in AcurosXB_13.5. The dose metrics D<sub>2%</sub>, D<sub>50%</sub>, and D<sub>98%</sub> were evaluated. Significant differences in elemental composition were found, particularly in carbon (73.26% in BDP vs. 14.3% in brain tissue) and oxygen (12.52% in BDP vs. 71.3% in brain tissue). The EANs were 6.6 for BDP and 7.4 for brain tissue. The mean CT numbers were 23.30 HU for the BDP and 37.30 HU for brain tissue, a 14 HU discrepancy. Nevertheless, dose calculation deviations were minimal, typically within ± 0.2%, with a maximum discrepancy of 0.6% for D<sub>98%</sub>. Although CT numbers and elemental compositions exhibited notable differences, their impact on dose calculations in the evaluated RTPS algorithms was negligible.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00908-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study quantitatively evaluated the impact of differences in computed tomography (CT) numbers and elemental compositions between commercially available brain-tissue-equivalent density plugs (BDPs) and actual brain tissue on dose calculations in a radiation therapy treatment planning system (RTPS). The mass density and elemental composition of BDP were analyzed using elemental analysis and X-ray fluorescence spectroscopy. The CT numbers of the BDP and actual brain tissue were measured and compared, with effective atomic numbers (EANs) calculated based on compositional analysis and the International Commission on Radiological Protection Publication 110 data for brain tissues. The theoretical CT numbers were derived using the stoichiometric CT number calibration (SCC) method. The dose calculations were performed using the modified CT number-to-relative electron density (RED) and mass density (MD) conversion tables in Eclipse v16.1, employing AAA and Acuros XB algorithms, employing the physical material table in AcurosXB_13.5. The dose metrics D2%, D50%, and D98% were evaluated. Significant differences in elemental composition were found, particularly in carbon (73.26% in BDP vs. 14.3% in brain tissue) and oxygen (12.52% in BDP vs. 71.3% in brain tissue). The EANs were 6.6 for BDP and 7.4 for brain tissue. The mean CT numbers were 23.30 HU for the BDP and 37.30 HU for brain tissue, a 14 HU discrepancy. Nevertheless, dose calculation deviations were minimal, typically within ± 0.2%, with a maximum discrepancy of 0.6% for D98%. Although CT numbers and elemental compositions exhibited notable differences, their impact on dose calculations in the evaluated RTPS algorithms was negligible.

脑组织等效密度塞CT值与实际脑组织值差异对剂量计算精度的影响。
本研究定量评估了商用脑组织等效密度塞(BDPs)和实际脑组织在计算机断层扫描(CT)数量和元素组成上的差异对放射治疗计划系统(RTPS)剂量计算的影响。采用元素分析和x射线荧光光谱分析了BDP的质量密度和元素组成。测量并比较BDP和实际脑组织的CT值,并根据成分分析和国际放射防护委员会第110号出版物的脑组织数据计算有效原子序数(ean)。理论CT数采用化学计量CT数校准(SCC)方法得到。剂量计算采用Eclipse v16.1中改进的CT数-相对电子密度(RED)和质量密度(MD)转换表,采用AAA和AcurosXB算法,采用AcurosXB_13.5中的物理材料表。评估剂量指标D2%、D50%和D98%。在元素组成上发现了显著的差异,特别是碳(BDP中73.26%比脑组织中的14.3%)和氧(BDP中12.52%比脑组织中的71.3%)。BDP的ean为6.6,脑组织的ean为7.4。BDP的平均CT数为23.30 HU,脑组织的平均CT数为37.30 HU,相差14 HU。然而,剂量计算偏差很小,通常在±0.2%以内,D98%时最大误差为0.6%。尽管CT数和元素组成表现出显著差异,但它们对评估RTPS算法中剂量计算的影响可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信