Yu Hong, Qi An, Zheng Wang, Bin Hu, Yi Yang, Rui Zeng, Ying Yao
{"title":"Multi-omics Analysis Reveals the Propagation Mechanism of Ferroptosis in Acute Kidney Injury.","authors":"Yu Hong, Qi An, Zheng Wang, Bin Hu, Yi Yang, Rui Zeng, Ying Yao","doi":"10.1007/s10753-025-02311-7","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a prevalent and critical clinical condition characterized by high morbidity and mortality. Recently, numerous studies have implicated ferroptosis, an iron-dependent programmed cell death process, in the pathophysiology of AKI. Despite this, the mechanism underlying the widespread occurrence of ferroptosis in AKI remains elusive. To address this, our study analyzed snRNA-seq data from AKI and healthy renal tissues. The analysis revealed notable differences in ferroptosis activity within proximal tubule (PT) cells of AKI patients, specifically highlighting a strong correlation between ferroptosis and the expression of genes GPX4, FTH1, and FTL. Spatial transcriptomics confirmed that the genes GPX4, FTH1, and FTL play a crucial role in driving ferroptosis propagation in AKI. Furthermore, utilizing a mouse model of bilateral renal ischemia-reperfusion injury, we validated the emergence of ferroptosis mediated by these key genes following AKI. The findings from our in vivo experiments were consistent with the spatial transcriptomics data. Chromatin accessibility and transcription factor analysis identified KLF6 as a repressor of ferroptosis-related genes. An in-depth analysis of PT revealed a subpopulation closely associated with ferroptosis. The cellular microenvironment within this subpopulation may regulate ferroptosis through the SPP1 signaling pathway, ultimately influencing the outcome of PT following AKI. In conclusion, this study elucidates the crucial role of GPX4, FTH1, and FTL in ferroptosis propagation during AKI and underscores the potential therapeutic benefits of targeting ferroptosis in the management of AKI.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-025-02311-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) is a prevalent and critical clinical condition characterized by high morbidity and mortality. Recently, numerous studies have implicated ferroptosis, an iron-dependent programmed cell death process, in the pathophysiology of AKI. Despite this, the mechanism underlying the widespread occurrence of ferroptosis in AKI remains elusive. To address this, our study analyzed snRNA-seq data from AKI and healthy renal tissues. The analysis revealed notable differences in ferroptosis activity within proximal tubule (PT) cells of AKI patients, specifically highlighting a strong correlation between ferroptosis and the expression of genes GPX4, FTH1, and FTL. Spatial transcriptomics confirmed that the genes GPX4, FTH1, and FTL play a crucial role in driving ferroptosis propagation in AKI. Furthermore, utilizing a mouse model of bilateral renal ischemia-reperfusion injury, we validated the emergence of ferroptosis mediated by these key genes following AKI. The findings from our in vivo experiments were consistent with the spatial transcriptomics data. Chromatin accessibility and transcription factor analysis identified KLF6 as a repressor of ferroptosis-related genes. An in-depth analysis of PT revealed a subpopulation closely associated with ferroptosis. The cellular microenvironment within this subpopulation may regulate ferroptosis through the SPP1 signaling pathway, ultimately influencing the outcome of PT following AKI. In conclusion, this study elucidates the crucial role of GPX4, FTH1, and FTL in ferroptosis propagation during AKI and underscores the potential therapeutic benefits of targeting ferroptosis in the management of AKI.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.