Prediction of the neurotoxic mechanisms of the pesticide phorate using network toxicology, molecular docking, and molecular dynamics simulation.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Xenobiotica Pub Date : 2025-03-01 Epub Date: 2025-05-05 DOI:10.1080/00498254.2025.2498010
Jiahui Xu, Yinghao Xiao, Jixin Li, Zhongyi Liu, Lili Zhang, Wei Xu
{"title":"Prediction of the neurotoxic mechanisms of the pesticide phorate using network toxicology, molecular docking, and molecular dynamics simulation.","authors":"Jiahui Xu, Yinghao Xiao, Jixin Li, Zhongyi Liu, Lili Zhang, Wei Xu","doi":"10.1080/00498254.2025.2498010","DOIUrl":null,"url":null,"abstract":"<p><p>Phorate is an organophosphate pesticide that may cause neurotoxicity, although the exact mechanisms remain unclear.This study aimed to elucidate the mechanisms of neurotoxicity caused by phorate overexposure using network toxicology, molecular docking, and molecular dynamics simulation.We identified 104 potential targets and 20 core targets associated with phorate-induced neurotoxicity. Key targets, including MMP9, CASP1, and KEAP1, may be involved in neuroactive ligand-receptor interaction signalling, as well as the cAMP and calcium signalling pathways. Furthermore, molecular dynamics simulations were conducted on the KEAP1 and CASP1 protein-ligand complexes, which demonstrated the highest binding stabilities in molecular docking analysis. The binding free energies were calculated to be -27.08 and -22.80 kcal/mol for KEAP1 and CASP1, respectively, indicating that both complexes are thermodynamically stable.The methodology used in this study facilitates the identification and assessment of previously unexplored agrochemical toxicity pathways and molecular mechanisms. These findings suggest a novel approach to controlling pesticide residues and screening drugs.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"217-229"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2025.2498010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Phorate is an organophosphate pesticide that may cause neurotoxicity, although the exact mechanisms remain unclear.This study aimed to elucidate the mechanisms of neurotoxicity caused by phorate overexposure using network toxicology, molecular docking, and molecular dynamics simulation.We identified 104 potential targets and 20 core targets associated with phorate-induced neurotoxicity. Key targets, including MMP9, CASP1, and KEAP1, may be involved in neuroactive ligand-receptor interaction signalling, as well as the cAMP and calcium signalling pathways. Furthermore, molecular dynamics simulations were conducted on the KEAP1 and CASP1 protein-ligand complexes, which demonstrated the highest binding stabilities in molecular docking analysis. The binding free energies were calculated to be -27.08 and -22.80 kcal/mol for KEAP1 and CASP1, respectively, indicating that both complexes are thermodynamically stable.The methodology used in this study facilitates the identification and assessment of previously unexplored agrochemical toxicity pathways and molecular mechanisms. These findings suggest a novel approach to controlling pesticide residues and screening drugs.

应用网络毒理学、分子对接、分子动力学模拟等方法预测农药膦的神经毒性机制。
磷酸酯是一种有机磷农药,可能导致神经毒性,尽管确切的机制尚不清楚。本研究旨在通过网络毒理学、分子对接、分子动力学模拟等手段,阐明磷酸盐过度暴露引起神经毒性的机制。我们确定了104个潜在靶点和20个与磷酸盐诱导的神经毒性相关的核心靶点。关键靶点,包括MMP9、CASP1和KEAP1,可能参与神经活性配体-受体相互作用信号通路,以及cAMP和钙信号通路。此外,对KEAP1和CASP1蛋白-配体复合物进行了分子动力学模拟,在分子对接分析中表现出最高的结合稳定性。KEAP1和CASP1的结合自由能分别为-27.08和-22.80 kcal/mol,表明这两种配合物都是热力学稳定的。本研究中使用的方法有助于识别和评估以前未探索的农用化学品毒性途径和分子机制。这些发现为农药残留控制和药物筛选提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Xenobiotica
Xenobiotica 医学-毒理学
CiteScore
3.80
自引率
5.60%
发文量
96
审稿时长
2 months
期刊介绍: Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信