Ismail Syed, Ken Sluis, Pratik Aryal, Zachary Solomon, Rucha Patel, Srihari Konduri, Dionicio Siegel, Ulf Smith, Barbara B Kahn
{"title":"Specific FAHFAs Predict Worsening Glucose Tolerance in Non-Diabetic Relatives of People with Type 2 Diabetes.","authors":"Ismail Syed, Ken Sluis, Pratik Aryal, Zachary Solomon, Rucha Patel, Srihari Konduri, Dionicio Siegel, Ulf Smith, Barbara B Kahn","doi":"10.1016/j.jlr.2025.100819","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing need for early biomarkers for Type 2 diabetes (T2D). Fatty-Acid-Hydroxy-Fatty-Acids (FAHFAs) are bioactive lipids with >580 regioisomers in human tissues. FAHFAs such as Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are anti-diabetic and anti-inflammatory. PAHSA concentrations in human serum and adipose tissue strongly correlate with insulin-sensitivity. Since PAHSAs and palmitic acid hydroxy oleic acids (PAHOAs) are among the most abundant FAHFAs in human serum, we investigated whether they predict worsening glucose tolerance in first-degree relatives of people with T2D. All participants had normal glucose tolerance (NGT) at baseline; 27 remained NGT (NGT-NGT) and 21 developed impaired glucose tolerance (NGT-IGT). In NGT-NGT, total PAHSA and PAHSA regioisomer concentrations were unchanged from baseline to follow up, while in NGT-IGT participants, most PAHSA regioisomers decreased. The initial total PAHSAs, 5-PAHSA, and 9-PAHSA, and changes in these correlated inversely with worsening glucose tolerance. Low total PAHSA concentrations at baseline and the decrease in total PAHSAs, 5-PAHSAs and 9-PAHSAs over time predicted IGT independent of initial BMI or %body fat, change in BMI or %body fat, initial fasting glucose, fasting insulin or triglyceride/HDL ratio. In contrast, baseline and follow up total PAHOA and PAHOA regioisomer levels were higher in NGT-IGT than NGT-NGT and some PAHOA regioisomers increased during follow up in NGT-IGT. Higher initial total PAHOAs predicted IGT independent of the same clinical variables. Thus, lower serum PAHSAs and higher PAHOAs predict worsening glucose tolerance/IGT independent of BMI, %body fat or change in these parameters even in lean, relatively young people.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100819"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100819","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a growing need for early biomarkers for Type 2 diabetes (T2D). Fatty-Acid-Hydroxy-Fatty-Acids (FAHFAs) are bioactive lipids with >580 regioisomers in human tissues. FAHFAs such as Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are anti-diabetic and anti-inflammatory. PAHSA concentrations in human serum and adipose tissue strongly correlate with insulin-sensitivity. Since PAHSAs and palmitic acid hydroxy oleic acids (PAHOAs) are among the most abundant FAHFAs in human serum, we investigated whether they predict worsening glucose tolerance in first-degree relatives of people with T2D. All participants had normal glucose tolerance (NGT) at baseline; 27 remained NGT (NGT-NGT) and 21 developed impaired glucose tolerance (NGT-IGT). In NGT-NGT, total PAHSA and PAHSA regioisomer concentrations were unchanged from baseline to follow up, while in NGT-IGT participants, most PAHSA regioisomers decreased. The initial total PAHSAs, 5-PAHSA, and 9-PAHSA, and changes in these correlated inversely with worsening glucose tolerance. Low total PAHSA concentrations at baseline and the decrease in total PAHSAs, 5-PAHSAs and 9-PAHSAs over time predicted IGT independent of initial BMI or %body fat, change in BMI or %body fat, initial fasting glucose, fasting insulin or triglyceride/HDL ratio. In contrast, baseline and follow up total PAHOA and PAHOA regioisomer levels were higher in NGT-IGT than NGT-NGT and some PAHOA regioisomers increased during follow up in NGT-IGT. Higher initial total PAHOAs predicted IGT independent of the same clinical variables. Thus, lower serum PAHSAs and higher PAHOAs predict worsening glucose tolerance/IGT independent of BMI, %body fat or change in these parameters even in lean, relatively young people.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.