Establishment and evaluation of a naked-eye diagnostic assay for tuberculosis utilizing reverse isothermal amplification-assisted CRISPR-Cas in resource-limited settings.
Ankush Kaushik, Jitendra Singh, Zeeshan Fatima, Saif Hameed
{"title":"Establishment and evaluation of a naked-eye diagnostic assay for tuberculosis utilizing reverse isothermal amplification-assisted CRISPR-Cas in resource-limited settings.","authors":"Ankush Kaushik, Jitendra Singh, Zeeshan Fatima, Saif Hameed","doi":"10.33393/dti.2025.3304","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The current scenario of tuberculosis (TB) caused by <i>Mycobacterium tuberculosis</i> (MTB) has presented an almost insurmountable challenge to hospitals with high patient numbers. Delayed diagnosis of TB is a major hurdle in preventing the employment of efficient therapeutics, leading to the development of drug resistance. Hence, an easily accessible diagnostic method, particularly for resource for resource-limited settings, is pertinent for the rapid identification of MTB-infected patients. In pursuit of developing such an assay, the present study offers a CLAP-TB (CRISPR-Cas coupled RT-LAMP Amplification Protocol for Tuberculosis) assay, which will allow us to diagnose TB rapidly and visually.</p><p><strong>Methods and results: </strong>Herein, the visual MTB detection consists of a method utilizing 232 different samples (sputum, urine, serum) from 82 patients for reverse transcription loop-mediated isothermal amplification (RT-LAMP). Additionally, the assay also utilizes the integration of a CRISPR-Cas12-based system using different guide RNAs of <i>IS6110</i> and an internal control <i>POP7</i> (human RNase P) genes along with visual detection via lateral flow readout-based dipsticks with the unaided eye (~134 min). Overall, the limit of detection for CLAP-TB assay was up to 1 ag of RNA, while the clinical sensitivity and specificity were 98.27% and 100%, respectively, on the pilot scale.</p><p><strong>Conclusion: </strong>Together, our CLAP-TB assay offers proof of concept for a rapid, sensitive, and specific method with the minimum technical expertise required for TB diagnosis in developing and resource-limited settings.</p>","PeriodicalId":11326,"journal":{"name":"Drug Target Insights","volume":"19 ","pages":"31-40"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Target Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33393/dti.2025.3304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The current scenario of tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) has presented an almost insurmountable challenge to hospitals with high patient numbers. Delayed diagnosis of TB is a major hurdle in preventing the employment of efficient therapeutics, leading to the development of drug resistance. Hence, an easily accessible diagnostic method, particularly for resource for resource-limited settings, is pertinent for the rapid identification of MTB-infected patients. In pursuit of developing such an assay, the present study offers a CLAP-TB (CRISPR-Cas coupled RT-LAMP Amplification Protocol for Tuberculosis) assay, which will allow us to diagnose TB rapidly and visually.
Methods and results: Herein, the visual MTB detection consists of a method utilizing 232 different samples (sputum, urine, serum) from 82 patients for reverse transcription loop-mediated isothermal amplification (RT-LAMP). Additionally, the assay also utilizes the integration of a CRISPR-Cas12-based system using different guide RNAs of IS6110 and an internal control POP7 (human RNase P) genes along with visual detection via lateral flow readout-based dipsticks with the unaided eye (~134 min). Overall, the limit of detection for CLAP-TB assay was up to 1 ag of RNA, while the clinical sensitivity and specificity were 98.27% and 100%, respectively, on the pilot scale.
Conclusion: Together, our CLAP-TB assay offers proof of concept for a rapid, sensitive, and specific method with the minimum technical expertise required for TB diagnosis in developing and resource-limited settings.