Naresh Poondla , Ali Babaeizad , Mohsen Sheykhhasan , Christopher J. Barry , Hamed Manoochehri , Hamid Tanzadehpanah , Hanie Mahaki , Sharafaldin Al-Musawi
{"title":"Exosome-based therapies and biomarkers in stroke: Current advances and future directions","authors":"Naresh Poondla , Ali Babaeizad , Mohsen Sheykhhasan , Christopher J. Barry , Hamed Manoochehri , Hamid Tanzadehpanah , Hanie Mahaki , Sharafaldin Al-Musawi","doi":"10.1016/j.expneurol.2025.115286","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke is a challenging neurological condition caused by interrupted blood flow to the brain and presents substantial global health concerns due to its prevalence and limited treatment options. Exosomes, tiny vesicles released by cells, are gaining attention for their potential in targeted drug delivery and as diagnostic and therapeutic biomarkers for stroke. This article outlines recent advances in exosome-based drug delivery systems and examines their application in managing stroke.</div><div>Stroke presents with diverse symptoms depending on the brain region affected, and current treatments primarily aim to restore blood flow and manage risk factors. Exosomes exhibit a unique structure and composition and contain bioactive molecules. Their ability to cross the blood-brain barrier and target specific cells makes them promising candidates for precise drug delivery in stroke therapy.</div><div>Exosomes contribute extensively to stroke pathophysiology and present considerable therapeutic promise by promoting neuroprotection and assisting in brain repair mechanisms. They can be engineered to carry various therapeutic substances, such as small molecules, enabling highly specific targeted delivery. Furthermore, the molecular compositions of exosomes reflect the pathological changes observed in stroke, indicating their potential use as biomarkers for early diagnosis, monitoring of disease progression, and creating individualized treatment strategies.</div><div>Despite promising developments, challenges remain in optimizing exosome production, purification, and cargo loading. Further investigations into their biological mechanisms and clinical validation are crucial for translating their potential into tangible benefits for patients. This article highlights recent advances and future prospects in exosome research, underscoring their application as novel diagnostic and therapeutic tools in stroke management.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"391 ","pages":"Article 115286"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625001505","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke is a challenging neurological condition caused by interrupted blood flow to the brain and presents substantial global health concerns due to its prevalence and limited treatment options. Exosomes, tiny vesicles released by cells, are gaining attention for their potential in targeted drug delivery and as diagnostic and therapeutic biomarkers for stroke. This article outlines recent advances in exosome-based drug delivery systems and examines their application in managing stroke.
Stroke presents with diverse symptoms depending on the brain region affected, and current treatments primarily aim to restore blood flow and manage risk factors. Exosomes exhibit a unique structure and composition and contain bioactive molecules. Their ability to cross the blood-brain barrier and target specific cells makes them promising candidates for precise drug delivery in stroke therapy.
Exosomes contribute extensively to stroke pathophysiology and present considerable therapeutic promise by promoting neuroprotection and assisting in brain repair mechanisms. They can be engineered to carry various therapeutic substances, such as small molecules, enabling highly specific targeted delivery. Furthermore, the molecular compositions of exosomes reflect the pathological changes observed in stroke, indicating their potential use as biomarkers for early diagnosis, monitoring of disease progression, and creating individualized treatment strategies.
Despite promising developments, challenges remain in optimizing exosome production, purification, and cargo loading. Further investigations into their biological mechanisms and clinical validation are crucial for translating their potential into tangible benefits for patients. This article highlights recent advances and future prospects in exosome research, underscoring their application as novel diagnostic and therapeutic tools in stroke management.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.