{"title":"Effect of regular exercise on ocular inflammation and mitochondrial biogenesis in experimental Alzheimer's disease model.","authors":"Suleyman Okudan, Tuğba Sezer, Emine Tınkır Kayırbatmaz, Muaz Belviranli, Nilsel Okudan","doi":"10.14715/cmb/2025.71.3.14","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the effects of regular exercise on inflammation and mitochondrial biogenesis in the eye using a controlled experimental Alzheimer's disease (AD) model. Twenty-four male Wistar rats were divided into four groups: control, Alzheimer, exercise, and Alzheimer with exercise. Molecular markers, including Nuclear Factor Kappa B (NF-κB), Fibronectin Type III Domain-Containing Protein 5 (FNDC5), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha (PGC-1α), Sirtuin 1 (SIRT1) were analyzed through real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) Matrix Metalloproteinase 2 (MMP-2), and Interleukin-1 Beta (IL-1β) were analyzed enzyme-linked immunosorbent assay (ELISA) to evaluate exercise-induced changes in inflammation and mitochondrial function. NF-κB levels were significantly elevated in the Alzheimer group, reflecting neuroinflammation, while exercise partially mitigated these effects. Exercise increased FNDC5, PGC-1α, and SIRT1 levels, suggesting a role in promoting neuroprotection and mitochondrial biogenesis. However, MMP-2 and IL-1β effects were primarily observed at the gene expression level, without substantial changes in protein levels. The use of an Alzheimer-specific model reduced confounding factors, such as age-related pathologies, providing a clearer perspective on Alzheimer-associated ocular changes. These findings highlight the potential of exercise in modulating key molecular pathways involved in AD.</p>","PeriodicalId":9802,"journal":{"name":"Cellular and molecular biology","volume":"71 3","pages":"117-123"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14715/cmb/2025.71.3.14","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of regular exercise on inflammation and mitochondrial biogenesis in the eye using a controlled experimental Alzheimer's disease (AD) model. Twenty-four male Wistar rats were divided into four groups: control, Alzheimer, exercise, and Alzheimer with exercise. Molecular markers, including Nuclear Factor Kappa B (NF-κB), Fibronectin Type III Domain-Containing Protein 5 (FNDC5), Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha (PGC-1α), Sirtuin 1 (SIRT1) were analyzed through real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) Matrix Metalloproteinase 2 (MMP-2), and Interleukin-1 Beta (IL-1β) were analyzed enzyme-linked immunosorbent assay (ELISA) to evaluate exercise-induced changes in inflammation and mitochondrial function. NF-κB levels were significantly elevated in the Alzheimer group, reflecting neuroinflammation, while exercise partially mitigated these effects. Exercise increased FNDC5, PGC-1α, and SIRT1 levels, suggesting a role in promoting neuroprotection and mitochondrial biogenesis. However, MMP-2 and IL-1β effects were primarily observed at the gene expression level, without substantial changes in protein levels. The use of an Alzheimer-specific model reduced confounding factors, such as age-related pathologies, providing a clearer perspective on Alzheimer-associated ocular changes. These findings highlight the potential of exercise in modulating key molecular pathways involved in AD.
期刊介绍:
Cellular and Molecular Biology publishes original articles, reviews, short communications, methods, meta-analysis notes, letters to editor and comments in the interdisciplinary science of Cellular and Molecular Biology linking and integrating molecular biology, biophysics, biochemistry, enzymology, physiology and biotechnology in a dynamic cell and tissue biology environment, applied to human, animals, plants tissues as well to microbial and viral cells. The journal Cellular and Molecular Biology is therefore open to intense interdisciplinary exchanges in medical, dental, veterinary, pharmacological, botanical and biological researches for the demonstration of these multiple links.