Partial versus total resetting for Lévy flights in d dimensions: Similarities and discrepancies.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-04-01 DOI:10.1063/5.0255695
Costantino Di Bello, Aleksei Chechkin, Tomasz Grzywny, Zbigniew Palmowski, Karol Szczypkowski, Bartosz Trojan
{"title":"Partial versus total resetting for Lévy flights in d dimensions: Similarities and discrepancies.","authors":"Costantino Di Bello, Aleksei Chechkin, Tomasz Grzywny, Zbigniew Palmowski, Karol Szczypkowski, Bartosz Trojan","doi":"10.1063/5.0255695","DOIUrl":null,"url":null,"abstract":"<p><p>While stochastic resetting (or total resetting) is a less young and more established concept in stochastic processes, partial stochastic resetting (PSR) is a relatively new field. PSR means that, at random moments in time, a stochastic process gets multiplied by a factor between 0 and 1, thus approaching but not reaching the resetting position. In this paper, we present new results on PSR highlighting the main similarities and discrepancies with total resetting. Specifically, we consider both symmetric α-stable Lévy processes (Lévy flights) and Brownian motion with PSR in arbitrary d dimensions. We derive explicit expressions for the propagator and its stationary measure and discuss in detail their asymptotic behavior. Interestingly, while approaching to stationarity, a dynamical phase transition occurs for the Brownian motion, but not for Lévy flights. We also analyze the behavior of the process around the resetting position and find significant differences between PSR and total resetting.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0255695","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

While stochastic resetting (or total resetting) is a less young and more established concept in stochastic processes, partial stochastic resetting (PSR) is a relatively new field. PSR means that, at random moments in time, a stochastic process gets multiplied by a factor between 0 and 1, thus approaching but not reaching the resetting position. In this paper, we present new results on PSR highlighting the main similarities and discrepancies with total resetting. Specifically, we consider both symmetric α-stable Lévy processes (Lévy flights) and Brownian motion with PSR in arbitrary d dimensions. We derive explicit expressions for the propagator and its stationary measure and discuss in detail their asymptotic behavior. Interestingly, while approaching to stationarity, a dynamical phase transition occurs for the Brownian motion, but not for Lévy flights. We also analyze the behavior of the process around the resetting position and find significant differences between PSR and total resetting.

在d维中对lsamvy飞行进行部分和全部重置:相似点和差异。
在随机过程中,随机重置(或全重置)是一个较不年轻、较成熟的概念,而部分随机重置(PSR)是一个相对较新的领域。PSR是指在随机时刻,随机过程乘以0 ~ 1之间的因子,从而接近但未达到复位位置。在本文中,我们提出了PSR的新结果,突出了与总重置的主要相似点和差异。具体地说,我们考虑了任意d维上具有PSR的对称α-稳定lsamvy过程(lsamvy飞行)和布朗运动。导出了传播子及其平稳测度的显式表达式,并详细讨论了它们的渐近性。有趣的是,在接近平稳时,布朗运动发生了一个动态相变,而lims飞行却没有。我们还分析了复位位置周围过程的行为,并发现PSR与总复位之间存在显着差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信