{"title":"Integrative proteomic profiling of tumor and plasma extracellular vesicles identifies a diagnostic biomarker panel for colorectal cancer.","authors":"Jun Wang, Chen-Zheng Gu, Peng-Xiang Wang, Jing-Rong Xian, Hao Wang, An-Quan Shang, Yu-Chen Zhong, Wen-Jing Zheng, Jian-Wen Cheng, Wen-Jing Yang, Jian Zhou, Jia Fan, Wei Guo, Xin-Rong Yang, Hao-Jie Lu","doi":"10.1016/j.xcrm.2025.102090","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of reliable non-invasive biomarkers for early colorectal cancer (CRC) diagnosis underscores the need for improved diagnostic tools. Extracellular vesicles (EVs) have emerged as promising candidates for liquid-biopsy-based cancer monitoring. Here, we propose a comprehensive workflow that integrates staged mass spectrometry (MS)-based discovery and verification with ELISA-based validation to identify EV protein biomarkers for CRC. Our approach, applied to 1,272 individuals, yields a machine learning model, ColonTrack, incorporating EV proteins HNRNPK, CTTN, and PSMC6. ColonTrack effectively distinguishes CRC from non-CRC cases and identifies early-stage CRC with high accuracy (combined area under the curve [AUC] >0.97, sensitivity ∼0.94, specificity ∼0.93). Our analysis of EV protein profiles from tissue and plasma demonstrates ColonTrack's potential as a robust non-invasive biomarker panel for CRC diagnosis and early detection.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102090"},"PeriodicalIF":11.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102090","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The lack of reliable non-invasive biomarkers for early colorectal cancer (CRC) diagnosis underscores the need for improved diagnostic tools. Extracellular vesicles (EVs) have emerged as promising candidates for liquid-biopsy-based cancer monitoring. Here, we propose a comprehensive workflow that integrates staged mass spectrometry (MS)-based discovery and verification with ELISA-based validation to identify EV protein biomarkers for CRC. Our approach, applied to 1,272 individuals, yields a machine learning model, ColonTrack, incorporating EV proteins HNRNPK, CTTN, and PSMC6. ColonTrack effectively distinguishes CRC from non-CRC cases and identifies early-stage CRC with high accuracy (combined area under the curve [AUC] >0.97, sensitivity ∼0.94, specificity ∼0.93). Our analysis of EV protein profiles from tissue and plasma demonstrates ColonTrack's potential as a robust non-invasive biomarker panel for CRC diagnosis and early detection.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.