Statin effects on the lipidome: Predicting statin usage and implications for cardiovascular risk prediction.

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Changyu Yi, Kevin Huynh, Yvette Schooneveldt, Gavriel Olshansky, Amy Liang, Tingting Wang, Habtamu B Beyene, Aleksandar Dakic, Jingqin Wu, Michelle Cinel, Natalie A Mellett, Gerald F Watts, Joseph Hung, Jennie Hui, John Beilby, Joanne E Curran, John Blangero, Eric K Moses, John Simes, Andrew M Tonkin, Leonard Kritharides, David Sullivan, Jonathan E Shaw, Dianna J Magliano, Agus Salim, Corey Giles, Peter J Meikle
{"title":"Statin effects on the lipidome: Predicting statin usage and implications for cardiovascular risk prediction.","authors":"Changyu Yi, Kevin Huynh, Yvette Schooneveldt, Gavriel Olshansky, Amy Liang, Tingting Wang, Habtamu B Beyene, Aleksandar Dakic, Jingqin Wu, Michelle Cinel, Natalie A Mellett, Gerald F Watts, Joseph Hung, Jennie Hui, John Beilby, Joanne E Curran, John Blangero, Eric K Moses, John Simes, Andrew M Tonkin, Leonard Kritharides, David Sullivan, Jonathan E Shaw, Dianna J Magliano, Agus Salim, Corey Giles, Peter J Meikle","doi":"10.1016/j.jlr.2025.100800","DOIUrl":null,"url":null,"abstract":"<p><p>Statin therapy is a highly successful and cost-effective strategy for the prevention and treatment of cardiovascular diseases (CVD). Adjusting for statin usage is crucial when exploring the association of the lipidome with CVD to avoid erroneous conclusions. However, practical challenges arise in real-world scenarios due to the frequent absence of statin usage information. To address this limitation, we demonstrate that statin usage can be accurately predicted using lipidomic data. Using three large population datasets and a longitudinal clinical study, we show that lipidomic-based statin prediction models exhibit high prediction accuracy in external validation. Furthermore, we introduce a re-weighted model, designed to overcome a ubiquitous limitation of prediction models, namely the need for predictor alignment between training and target data. We demonstrated that the re-weighted models achieved comparable prediction accuracy to ad hoc models which use the aligned predictor between training and target data. This innovation holds promise for significantly enhancing the transferability of statin prediction and other 'omics prediction models, especially in situations where predictor alignment is incomplete. Our statin prediction model now allows for the inclusion of statin usage in lipidomic analyses of cohorts even where statin use is not available, improving the interpretability of the resulting analyses.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":"66 5","pages":"100800"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100800","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Statin therapy is a highly successful and cost-effective strategy for the prevention and treatment of cardiovascular diseases (CVD). Adjusting for statin usage is crucial when exploring the association of the lipidome with CVD to avoid erroneous conclusions. However, practical challenges arise in real-world scenarios due to the frequent absence of statin usage information. To address this limitation, we demonstrate that statin usage can be accurately predicted using lipidomic data. Using three large population datasets and a longitudinal clinical study, we show that lipidomic-based statin prediction models exhibit high prediction accuracy in external validation. Furthermore, we introduce a re-weighted model, designed to overcome a ubiquitous limitation of prediction models, namely the need for predictor alignment between training and target data. We demonstrated that the re-weighted models achieved comparable prediction accuracy to ad hoc models which use the aligned predictor between training and target data. This innovation holds promise for significantly enhancing the transferability of statin prediction and other 'omics prediction models, especially in situations where predictor alignment is incomplete. Our statin prediction model now allows for the inclusion of statin usage in lipidomic analyses of cohorts even where statin use is not available, improving the interpretability of the resulting analyses.

他汀类药物对脂质组的影响:预测他汀类药物的使用及其对心血管风险预测的影响。
他汀类药物治疗是预防和治疗心血管疾病(CVD)的一种非常成功和具有成本效益的策略。在探索脂质组与心血管疾病的关系时,调整他汀类药物的使用是至关重要的,以避免错误的结论。然而,由于经常缺乏他汀类药物的使用信息,在现实世界中出现了实际的挑战。为了解决这一限制,我们证明他汀类药物的使用可以使用脂质组学数据准确预测。通过三个大型人群数据集和一项纵向临床研究,我们发现基于脂质组学的他汀类药物预测模型在外部验证中具有很高的预测准确性。此外,我们引入了一个重新加权的模型,旨在克服预测模型普遍存在的局限性,即需要在训练数据和目标数据之间进行预测器对齐。我们证明了重新加权模型与使用训练数据和目标数据之间对齐的预测器的特设模型具有相当的预测精度。这一创新有望显著提高他汀类药物预测和其他组学预测模型的可转移性,特别是在预测器对齐不完整的情况下。我们的他汀类药物预测模型现在允许在队列的脂质组学分析中包括他汀类药物的使用,即使在他汀类药物不可用的情况下,也提高了结果分析的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信