{"title":"Improving urinary oxygen monitoring with a transit time algorithm: enhancing AKI detection in cardiac surgery.","authors":"Ali Ramezani, Natalie Silverton, Kai Kuck","doi":"10.1007/s10877-025-01298-8","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) affects 40-50% of cardiac surgery patients and is closely linked to renal medullary hypoxia. Although urinary oxygen partial pressure (PuO<sub>2</sub>) offers real-time insight into renal oxygenation, variable urine transit times through the urinary catheter can impair measurement accuracy. This study aimed to develop an algorithm that calculates transit time by modeling urine flow as discrete particles and to assess whether it improves PuO<sub>2</sub> estimation. The proposed algorithm models urine flow as discrete particles, tracking transit time through the urinary catheter. The transit time allows correcting oxygen measurements at the catheter exit, mitigating distortions from variable flow rates. Validation used a bench-top system with a flow sensor, a 30-cm glass tube simulating a catheter, and optode-based oxygen sensors positioned inside a flask and at the catheter entry and exit. Flow rates spanned 20-450 mL/h, and flask oxygen 15-120 mmHg, with exit compared to entrance values. Without adjustment, the root mean square error (RMSE) between entrance and exit oxygen measurements was 15.71 mmHg. Incorporating the transit time correction reduced the RMSE to 5.82 mmHg. This marked improvement indicates that the corrected measurements more accurately reflect the true oxygen levels entering the catheter across various flow conditions. By accounting for dynamic urine transit times, the proposed algorithm substantially enhances the accuracy of urinary oxygen monitoring. This improvement in estimating renal oxygenation may facilitate noninvasive detection of renal hypoxia and allow for timely interventions to reduce the incidence and severity of AKI in cardiac surgery patients.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-025-01298-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) affects 40-50% of cardiac surgery patients and is closely linked to renal medullary hypoxia. Although urinary oxygen partial pressure (PuO2) offers real-time insight into renal oxygenation, variable urine transit times through the urinary catheter can impair measurement accuracy. This study aimed to develop an algorithm that calculates transit time by modeling urine flow as discrete particles and to assess whether it improves PuO2 estimation. The proposed algorithm models urine flow as discrete particles, tracking transit time through the urinary catheter. The transit time allows correcting oxygen measurements at the catheter exit, mitigating distortions from variable flow rates. Validation used a bench-top system with a flow sensor, a 30-cm glass tube simulating a catheter, and optode-based oxygen sensors positioned inside a flask and at the catheter entry and exit. Flow rates spanned 20-450 mL/h, and flask oxygen 15-120 mmHg, with exit compared to entrance values. Without adjustment, the root mean square error (RMSE) between entrance and exit oxygen measurements was 15.71 mmHg. Incorporating the transit time correction reduced the RMSE to 5.82 mmHg. This marked improvement indicates that the corrected measurements more accurately reflect the true oxygen levels entering the catheter across various flow conditions. By accounting for dynamic urine transit times, the proposed algorithm substantially enhances the accuracy of urinary oxygen monitoring. This improvement in estimating renal oxygenation may facilitate noninvasive detection of renal hypoxia and allow for timely interventions to reduce the incidence and severity of AKI in cardiac surgery patients.
期刊介绍:
The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine.
The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group.
The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.