{"title":"Fetal Cerebellum Landmark Detection Based on 3D MRI: Method and Benchmark.","authors":"Haifan Gong, Huixian Liu, Yitao Wang, Xiaoling Liu, Xiang Wan, Qiao Shi, Haofeng Li","doi":"10.1109/JBHI.2025.3559702","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal cerebellum landmark detection is crucial for assessing fetal brain development. Although deep learning has become the standard for automatic landmark detection, most previous methods have focused on using 2D ultrasound or thick Magnetic Resonance Imaging (MRI) . To improve accuracy, landmarks should be located on thin 3D MRIs. However, abnormal development, high noise, and fuzzy boundaries in 3D fetal brain images make traditional methods less effective for cerebellum landmark detection. To address this, we introduce the Anatomical Pseudo-label Guided Attention (APGA) network alongside a 3D MRI-based benchmark for fetal cerebellum landmark detection. During training, we use a shared encoder to extract image features and two decoders for landmark regression and anatomical pseudo-label segmentation. We design a Feature Decoupling Transformer (FDT) and embed it into the encoder to better calibrate the features for the two tasks. We only need the encoder, the FDT, and the landmark decoder during the inference phase. Extensive experiments on our proposed benchmark and out-of-domain test set have shown the effectiveness of our method. Our simulations also demonstrated that 3D biometrics are better than 2D biometrics. Code is available at https://github.com/lhaof/LFC.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3559702","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Fetal cerebellum landmark detection is crucial for assessing fetal brain development. Although deep learning has become the standard for automatic landmark detection, most previous methods have focused on using 2D ultrasound or thick Magnetic Resonance Imaging (MRI) . To improve accuracy, landmarks should be located on thin 3D MRIs. However, abnormal development, high noise, and fuzzy boundaries in 3D fetal brain images make traditional methods less effective for cerebellum landmark detection. To address this, we introduce the Anatomical Pseudo-label Guided Attention (APGA) network alongside a 3D MRI-based benchmark for fetal cerebellum landmark detection. During training, we use a shared encoder to extract image features and two decoders for landmark regression and anatomical pseudo-label segmentation. We design a Feature Decoupling Transformer (FDT) and embed it into the encoder to better calibrate the features for the two tasks. We only need the encoder, the FDT, and the landmark decoder during the inference phase. Extensive experiments on our proposed benchmark and out-of-domain test set have shown the effectiveness of our method. Our simulations also demonstrated that 3D biometrics are better than 2D biometrics. Code is available at https://github.com/lhaof/LFC.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.