Scaling of nodal resilience and influence in complex dynamical networks.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-05-01 DOI:10.1063/5.0254365
Li-Lei Han, Lang Zeng, Hayoung Choi, Ying-Cheng Lai, Younghae Do
{"title":"Scaling of nodal resilience and influence in complex dynamical networks.","authors":"Li-Lei Han, Lang Zeng, Hayoung Choi, Ying-Cheng Lai, Younghae Do","doi":"10.1063/5.0254365","DOIUrl":null,"url":null,"abstract":"<p><p>In complex dynamical networks, the resilience of the individual nodes against perturbation and their influence on the network dynamics are of great interest and have been actively investigated. We consider situations where the coupling dynamics are separable, which arise in certain classes of dynamical processes including epidemic spreading, population dynamics, and regulatory processes, and derive the algebraic scaling relations characterizing the nodal resilience and influence. Utilizing synthetic and empirical networks of different topologies, we numerically verify the scaling associated with the dynamical processes. Our results provide insights into the interplay between network topology and dynamics for the class of processes with separable coupling functions.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0254365","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In complex dynamical networks, the resilience of the individual nodes against perturbation and their influence on the network dynamics are of great interest and have been actively investigated. We consider situations where the coupling dynamics are separable, which arise in certain classes of dynamical processes including epidemic spreading, population dynamics, and regulatory processes, and derive the algebraic scaling relations characterizing the nodal resilience and influence. Utilizing synthetic and empirical networks of different topologies, we numerically verify the scaling associated with the dynamical processes. Our results provide insights into the interplay between network topology and dynamics for the class of processes with separable coupling functions.

复杂动态网络中节点弹性的尺度及其影响。
在复杂的动态网络中,单个节点对扰动的弹性及其对网络动力学的影响是非常有趣的,并且已经被积极地研究。考虑了流行病传播、种群动态和调控过程等动态过程中出现的耦合动力学可分离的情况,推导了表征节点弹性和影响的代数尺度关系。利用不同拓扑结构的综合网络和经验网络,我们在数值上验证了与动态过程相关的尺度。我们的结果为具有可分离耦合函数的过程类的网络拓扑和动力学之间的相互作用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信