A molecular dynamics study of membrane positioning for 7-transmembrane RGS proteins to modulate G-protein-mediated signaling in plants.

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-04-11 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.04.013
Celio Cabral Oliveira, Eduardo Bassi Simoni, Mariana Abrahão Bueno Morais, Elizabeth Pacheco Batista Fontes, Pedro A Braga Dos Reis, Daisuke Urano, Alan M Jones
{"title":"A molecular dynamics study of membrane positioning for 7-transmembrane RGS proteins to modulate G-protein-mediated signaling in plants.","authors":"Celio Cabral Oliveira, Eduardo Bassi Simoni, Mariana Abrahão Bueno Morais, Elizabeth Pacheco Batista Fontes, Pedro A Braga Dos Reis, Daisuke Urano, Alan M Jones","doi":"10.1016/j.csbj.2025.04.013","DOIUrl":null,"url":null,"abstract":"<p><p>Protein phosphorylation regulates G protein signaling in plants. AtRGS1 primarily modulates AtGPA1, the canonical Gα subunit in the heterotrimeric G protein complex. AtRGS1 possesses both a seven-transmembrane (7TM) domain connected to a cytoplasmic Regulator of G Protein Signaling domain (RGS box domain) by a flexible linker region. This study presents the novel function of a highly conserved, known phosphorylation site, Ser278, within this linker region utilizing molecular dynamics (MD) simulations with <i>in vivo</i> experimental validation. We show that phosphorylation at Ser278 is crucial for establishing specific AtRGS1 interactions with AtGPA1, primarily by stabilizing the positioning and orientation of the RGS domain within the membrane. Phosphorylation at Ser278 enhances the formation of stable hydrogen bonds between phosphorylated Ser278 and conserved residues within the RGS box domain, influencing the flexibility of RGS domain mobility and thus modulating its interface to AtGPA1. Consistent with the MD simulations, <i>in vivo</i> assays demonstrated that this phosphorylation reduced the binding of AtRGS1 to AtGPA1 and conferred changes in physiology. Specifically, the non-phosphorylation mutation of Ser278 decreased both plant immune responses and AtRGS1 endocytosis evoked by the bacterial effector, flg22. MD simulations and sequence analysis of diverse plant 7TM-RGS proteins suggest conservation of this mechanism across land plants, emphasizing the critical role of this previously overlooked linker region.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"1529-1537"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12017998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.04.013","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein phosphorylation regulates G protein signaling in plants. AtRGS1 primarily modulates AtGPA1, the canonical Gα subunit in the heterotrimeric G protein complex. AtRGS1 possesses both a seven-transmembrane (7TM) domain connected to a cytoplasmic Regulator of G Protein Signaling domain (RGS box domain) by a flexible linker region. This study presents the novel function of a highly conserved, known phosphorylation site, Ser278, within this linker region utilizing molecular dynamics (MD) simulations with in vivo experimental validation. We show that phosphorylation at Ser278 is crucial for establishing specific AtRGS1 interactions with AtGPA1, primarily by stabilizing the positioning and orientation of the RGS domain within the membrane. Phosphorylation at Ser278 enhances the formation of stable hydrogen bonds between phosphorylated Ser278 and conserved residues within the RGS box domain, influencing the flexibility of RGS domain mobility and thus modulating its interface to AtGPA1. Consistent with the MD simulations, in vivo assays demonstrated that this phosphorylation reduced the binding of AtRGS1 to AtGPA1 and conferred changes in physiology. Specifically, the non-phosphorylation mutation of Ser278 decreased both plant immune responses and AtRGS1 endocytosis evoked by the bacterial effector, flg22. MD simulations and sequence analysis of diverse plant 7TM-RGS proteins suggest conservation of this mechanism across land plants, emphasizing the critical role of this previously overlooked linker region.

7-跨膜RGS蛋白在植物中调节g蛋白介导信号的分子动力学研究。
蛋白磷酸化调控植物中G蛋白信号转导。AtRGS1主要调控异三聚体G蛋白复合物中典型的Gα亚基AtGPA1。AtRGS1具有一个7 -跨膜结构域(7TM),通过一个柔性连接体区域连接胞质G蛋白信号调节结构域(RGS盒结构域)。本研究利用分子动力学(MD)模拟和体内实验验证,展示了该连接体区域内高度保守的已知磷酸化位点Ser278的新功能。我们发现,Ser278位点的磷酸化对于AtGPA1与AtRGS1的特异性相互作用至关重要,主要是通过稳定膜内RGS结构域的定位和方向。Ser278位点的磷酸化增强了磷酸化的Ser278与RGS box结构域内保守残基之间形成稳定的氢键,影响了RGS结构域迁移的灵活性,从而调节了其与AtGPA1的界面。与MD模拟一致,体内实验表明,这种磷酸化降低了AtRGS1与AtGPA1的结合,并导致生理变化。具体来说,Ser278的非磷酸化突变降低了植物的免疫反应和细菌效应物flg22引起的AtRGS1内吞作用。多种植物7TM-RGS蛋白的MD模拟和序列分析表明,这一机制在陆地植物中是保守的,强调了这一之前被忽视的连接区域的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信