{"title":"Targeting the inter-monomeric space of TNFR1 pre-ligand dimers: A novel binding pocket for allosteric modulators.","authors":"Chih Hung Lo","doi":"10.1016/j.csbj.2025.03.046","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor necrosis factor (TNF) receptor 1 (TNFR1) plays a central role in signal transduction mediating inflammation and cell death associated with autoimmune and neurodegenerative disorders. Inhibition of TNFR1 signaling is a highly sought-after strategy to target these diseases. TNFR1 forms pre-ligand dimers held together by the pre-ligand assembly domain (PLAD), which is essential for receptor signaling. TNFR1 dimers form the crucial points of interaction for the entire receptor signaling complex by connecting TNF ligand bound trimeric receptors. While previous studies have shown the feasibility of disrupting TNFR1 dimeric interactions through competitive mechanism that targets the PLAD, our recent studies have demonstrated that small molecules could also bind PLAD to modulate TNFR1 signaling through an allosteric mechanism. Importantly, these allosteric modulators alter receptor dynamics and propagate long-range conformational perturbation that involves reshuffling of the receptors in the cytosolic domains without disrupting receptor-receptor or receptor-ligand interactions. In this study, we perform molecular docking of previously reported allosteric modulators on the extracellular domain of TNFR1 to understand their binding sites and interacting residues. We identify the inter-monomeric space between TNFR1 pre-ligand dimers as a novel binding pocket for allosteric modulators. We further conduct pharmacological analyses to understand the bioactivity of these compounds and their interacting residues and pharmacological properties. We then provide insights into the structure-activity relationship of these allosteric modulators and the feasibility of targeting TNFR1 conformational dynamics. This paves the way for developing new therapeutic strategies and designing chemical scaffolds to target TNFR1 signaling.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"1335-1341"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11999085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.03.046","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor necrosis factor (TNF) receptor 1 (TNFR1) plays a central role in signal transduction mediating inflammation and cell death associated with autoimmune and neurodegenerative disorders. Inhibition of TNFR1 signaling is a highly sought-after strategy to target these diseases. TNFR1 forms pre-ligand dimers held together by the pre-ligand assembly domain (PLAD), which is essential for receptor signaling. TNFR1 dimers form the crucial points of interaction for the entire receptor signaling complex by connecting TNF ligand bound trimeric receptors. While previous studies have shown the feasibility of disrupting TNFR1 dimeric interactions through competitive mechanism that targets the PLAD, our recent studies have demonstrated that small molecules could also bind PLAD to modulate TNFR1 signaling through an allosteric mechanism. Importantly, these allosteric modulators alter receptor dynamics and propagate long-range conformational perturbation that involves reshuffling of the receptors in the cytosolic domains without disrupting receptor-receptor or receptor-ligand interactions. In this study, we perform molecular docking of previously reported allosteric modulators on the extracellular domain of TNFR1 to understand their binding sites and interacting residues. We identify the inter-monomeric space between TNFR1 pre-ligand dimers as a novel binding pocket for allosteric modulators. We further conduct pharmacological analyses to understand the bioactivity of these compounds and their interacting residues and pharmacological properties. We then provide insights into the structure-activity relationship of these allosteric modulators and the feasibility of targeting TNFR1 conformational dynamics. This paves the way for developing new therapeutic strategies and designing chemical scaffolds to target TNFR1 signaling.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology