Integrated liver-secreted and plasma proteomics identify a predictive model that stratifies MASH.

IF 11.7 1区 医学 Q1 CELL BIOLOGY
William De Nardo, Olivia Lee, Yazmin Johari, Jacqueline Bayliss, Marcus Pensa, Paula M Miotto, Stacey N Keenan, Andrew Ryan, Amber Rucinski, Tessa M Svinos, Geraldine J Ooi, Wendy A Brown, William Kemp, Stuart K Roberts, Benjamin L Parker, Magdalene K Montgomery, Mark Larance, Paul R Burton, Matthew J Watt
{"title":"Integrated liver-secreted and plasma proteomics identify a predictive model that stratifies MASH.","authors":"William De Nardo, Olivia Lee, Yazmin Johari, Jacqueline Bayliss, Marcus Pensa, Paula M Miotto, Stacey N Keenan, Andrew Ryan, Amber Rucinski, Tessa M Svinos, Geraldine J Ooi, Wendy A Brown, William Kemp, Stuart K Roberts, Benjamin L Parker, Magdalene K Montgomery, Mark Larance, Paul R Burton, Matthew J Watt","doi":"10.1016/j.xcrm.2025.102085","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is a major risk factor for metabolic-associated steatotic liver disease (MASLD), which can progress to metabolic-associated steatohepatitis (MASH). There are no validated non-invasive tests to stratify persons with obesity with a greater risk for MASH. Herein, we assess plasma and liver from 266 obese individuals spanning the MASLD spectrum. Ninety-six human livers were precision-cut, and mass spectrometry-based proteomics identifies 3,333 proteins in the liver-secretion medium, of which 107 are differentially secreted in MASH compared with no pathology. The plasma proteome is markedly remodeled in MASH but is not different between patients with steatosis and no pathology. The APASHA model, comprising plasma apolipoprotein F (APOF), proprotein convertase subtilisin/kexin type 9 (PCSK9), afamin (AFM), S100 calcium-binding protein A6 (S100A6), HbA1c, and zinc-alpha-2-glycoprotein (AZGP1), stratifies MASH (area under receiver operating characteristic [AUROC] = 0.88). Our investigations detail the evolution of liver-secreted and plasma proteins with MASLD progression, providing a rich resource defining human liver-secreted proteins and creating a predictive model to stratify patients with obesity at risk of MASH.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102085"},"PeriodicalIF":11.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102085","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity is a major risk factor for metabolic-associated steatotic liver disease (MASLD), which can progress to metabolic-associated steatohepatitis (MASH). There are no validated non-invasive tests to stratify persons with obesity with a greater risk for MASH. Herein, we assess plasma and liver from 266 obese individuals spanning the MASLD spectrum. Ninety-six human livers were precision-cut, and mass spectrometry-based proteomics identifies 3,333 proteins in the liver-secretion medium, of which 107 are differentially secreted in MASH compared with no pathology. The plasma proteome is markedly remodeled in MASH but is not different between patients with steatosis and no pathology. The APASHA model, comprising plasma apolipoprotein F (APOF), proprotein convertase subtilisin/kexin type 9 (PCSK9), afamin (AFM), S100 calcium-binding protein A6 (S100A6), HbA1c, and zinc-alpha-2-glycoprotein (AZGP1), stratifies MASH (area under receiver operating characteristic [AUROC] = 0.88). Our investigations detail the evolution of liver-secreted and plasma proteins with MASLD progression, providing a rich resource defining human liver-secreted proteins and creating a predictive model to stratify patients with obesity at risk of MASH.

综合肝分泌和血浆蛋白质组学确定了分层MASH的预测模型。
肥胖是代谢性脂肪性肝病(MASLD)的主要危险因素,可发展为代谢性脂肪性肝炎(MASH)。目前还没有有效的非侵入性测试来对肥胖人群进行分层。在此,我们评估了横跨MASLD谱的266名肥胖个体的血浆和肝脏。96个人类肝脏被精确切割,基于质谱的蛋白质组学在肝脏分泌培养基中鉴定出3333个蛋白质,其中107个在MASH中与无病理相比差异分泌。血浆蛋白质组在MASH中明显重塑,但在脂肪变性和无病理患者之间没有差异。APASHA模型包括血浆载脂蛋白F (APOF)、蛋白转化酶枯草杆菌素/激酶蛋白9型(PCSK9)、AFM (AFM)、S100钙结合蛋白A6 (S100A6)、HbA1c和锌- α -2糖蛋白(AZGP1),使MASH分层(受体工作特征下面积[AUROC] = 0.88)。我们的研究详细描述了肝脏分泌蛋白和血浆蛋白在MASLD进展中的演变,提供了丰富的资源来定义人类肝脏分泌蛋白,并创建了一个预测模型来对肥胖患者进行分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信