{"title":"Using Existing Indicators to Bridge the Exposure Data Gap: A Novel Natural Hazard Assessment.","authors":"Adam K Williams, James K Summers, Linda C Harwell","doi":"10.3390/su162310778","DOIUrl":null,"url":null,"abstract":"<p><p>Extreme natural hazard events are increasing across the globe, compelling increased climate research on resiliency. Research concerning issues as integrative as climate change and natural hazard resiliency often requires complex methodologies to account for cumulative influences. Indicators can be used to parse complex data to assess the intersection of inputs and outcomes (i.e., cumulative impacts). The Climate Resilience Screening Index (CRSI) is a good example of an indicator framework as it integrates indicators and their associated metrics into five domains (e.g., natural environment, society, and risk), enabling the index to accommodate a variety of inputs in its assessment of resilience. Indicator research, however, is generally limited by the availability of pertinent data. Natural hazard data concerning exposure, loss, and risk are routinely collected by the Federal Emergency Management Agency (FEMA) to create and update the National Risk Index (NRI), a composite index. The NRI can be disaggregated to obtain individual underlying metrics about natural hazard exposure. Quantifying natural hazard exposure requires extensive computation, with each hazard type requiring multiple modifying considerations, such as meteorological adjustments made by subject matter experts. Commonly available natural hazard exposure data, like that from FEMA, combines the spatial extent of historical natural hazard events and the determined value of the affected area. Exposure-related data were retrieved from the National Risk Index and used to create a new composite value to represent only the spatial extent of natural hazard events. Utilizing this new methodology to represent natural hazard exposure alleviates the burden of complex computation. It allows exposure data to be more expeditiously integrated into research and indices relating to natural hazards.</p>","PeriodicalId":22183,"journal":{"name":"Sustainability","volume":"16 23","pages":"10778"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980775/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su162310778","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Extreme natural hazard events are increasing across the globe, compelling increased climate research on resiliency. Research concerning issues as integrative as climate change and natural hazard resiliency often requires complex methodologies to account for cumulative influences. Indicators can be used to parse complex data to assess the intersection of inputs and outcomes (i.e., cumulative impacts). The Climate Resilience Screening Index (CRSI) is a good example of an indicator framework as it integrates indicators and their associated metrics into five domains (e.g., natural environment, society, and risk), enabling the index to accommodate a variety of inputs in its assessment of resilience. Indicator research, however, is generally limited by the availability of pertinent data. Natural hazard data concerning exposure, loss, and risk are routinely collected by the Federal Emergency Management Agency (FEMA) to create and update the National Risk Index (NRI), a composite index. The NRI can be disaggregated to obtain individual underlying metrics about natural hazard exposure. Quantifying natural hazard exposure requires extensive computation, with each hazard type requiring multiple modifying considerations, such as meteorological adjustments made by subject matter experts. Commonly available natural hazard exposure data, like that from FEMA, combines the spatial extent of historical natural hazard events and the determined value of the affected area. Exposure-related data were retrieved from the National Risk Index and used to create a new composite value to represent only the spatial extent of natural hazard events. Utilizing this new methodology to represent natural hazard exposure alleviates the burden of complex computation. It allows exposure data to be more expeditiously integrated into research and indices relating to natural hazards.
期刊介绍:
Sustainability (ISSN 2071-1050) is an international and cross-disciplinary scholarly, open access journal of environmental, cultural, economic and social sustainability of human beings, which provides an advanced forum for studies related to sustainability and sustainable development. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research relating to natural sciences, social sciences and humanities in as much detail as possible in order to promote scientific predictions and impact assessments of global change and development. Full experimental and methodical details must be provided so that the results can be reproduced.