Zhongtian Cai, Danni Wang, Zekun Li, Mingxiao Gu, Qidong You, Lei Wang
{"title":"The value of coimmunoprecipitation (Co-IP) assays in drug discovery.","authors":"Zhongtian Cai, Danni Wang, Zekun Li, Mingxiao Gu, Qidong You, Lei Wang","doi":"10.1080/17460441.2025.2497913","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Co-IP assays are well-established technologies widely applicated for investigating the mechanisms underlying protein-protein interactions and identifying protein-protein interaction modulators. These assays play an important role in elucidating the complex networks of protein interactions critical for cellular functions.</p><p><strong>Areas covered: </strong>This review covers a technical protocol of standard Co-IP. The research contents and conclusions of Co-IP in protein-protein interactions and protein-protein interaction modulators are summarized. Finally, three derivations of Co-IP assays are introduced. Literature was surveyed from original publications, standard sources, PubMed and clinical trials through 14 April 2025.</p><p><strong>Expert opinion: </strong>To perform Co-IP successfully, researchers must consider the selection of specific antibody, remission of nonspecific binding and detection limitations for transient or weak interactions. Co-IP assays offer several advantages over tandem affinity purification and pull-down methods, particularly in their applicability to primary cells. This allows for the study of PPIs in a natural cellular environment. Conventional Co-IP assays often struggle to detect weak or transient interactions and can suffer from nonspecific binding contamination. However, advancements in Co-IP techniques address these challenges, enhancing sensitivity and specificity, and enabling the detection of subtle interactions while distinguishing specific binding events. This makes Co-IP a powerful tool for exploring the dynamics of protein interactions in living systems.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"859-872"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2497913","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Co-IP assays are well-established technologies widely applicated for investigating the mechanisms underlying protein-protein interactions and identifying protein-protein interaction modulators. These assays play an important role in elucidating the complex networks of protein interactions critical for cellular functions.
Areas covered: This review covers a technical protocol of standard Co-IP. The research contents and conclusions of Co-IP in protein-protein interactions and protein-protein interaction modulators are summarized. Finally, three derivations of Co-IP assays are introduced. Literature was surveyed from original publications, standard sources, PubMed and clinical trials through 14 April 2025.
Expert opinion: To perform Co-IP successfully, researchers must consider the selection of specific antibody, remission of nonspecific binding and detection limitations for transient or weak interactions. Co-IP assays offer several advantages over tandem affinity purification and pull-down methods, particularly in their applicability to primary cells. This allows for the study of PPIs in a natural cellular environment. Conventional Co-IP assays often struggle to detect weak or transient interactions and can suffer from nonspecific binding contamination. However, advancements in Co-IP techniques address these challenges, enhancing sensitivity and specificity, and enabling the detection of subtle interactions while distinguishing specific binding events. This makes Co-IP a powerful tool for exploring the dynamics of protein interactions in living systems.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.