{"title":"Specific macrophage RhoA targeting CRISPR-Cas9 for mitigating osteoclastogenesis-induced joint damage in inflammatory arthritis.","authors":"Jianhai Chen, Jianwei Tan, Nannan Wang, Hui Li, Wenxiang Cheng, Jian Li, Benguo Wang, Adam C Sedgwick, Zhitong Chen, Guojun Chen, Peng Zhang, Wei Zheng, Chengbo Liu, Jingqin Chen","doi":"10.1016/j.xcrm.2025.102046","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is the most prevalent inflammatory arthritis with unknown etiology, characterized by synovial inflammation and articular bone erosion. Studies have highlighted that inhibiting macrophage-induced osteoclastogenesis holds promise in mitigating bone destruction. However, specifically halting this pathological cascade remains a challenge for the management of RA. Here, initially, we identify that Ras homolog gene family member A (RhoA) is a pivotal target in inducing osteoclastogenesis of macrophages. Subsequently, we develop a strategy termed specific macrophages RhoA targeting (SMART), in which phosphatidylserine (PS)-enriched macrophage membranes are engineered to deliver macrophage-specific promoter-containing CRISPR-Cas9 plasmids (SMART-Cas9), enabling targeted editing of RhoA in RA joint macrophages. Multiscale imaging techniques confirm the highly specific targeted effect of SMART-Cas9 on the macrophages of inflamed joints. SMART-Cas9 successfully reduces osteoclastogenesis by macrophages, thus mitigating bone erosion by modulating cytoskeletal dynamics and immune balance in inflammatory arthritis, representing a therapeutic avenue for RA and other inflammatory bone diseases.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":"6 4","pages":"102046"},"PeriodicalIF":11.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102046","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rheumatoid arthritis (RA) is the most prevalent inflammatory arthritis with unknown etiology, characterized by synovial inflammation and articular bone erosion. Studies have highlighted that inhibiting macrophage-induced osteoclastogenesis holds promise in mitigating bone destruction. However, specifically halting this pathological cascade remains a challenge for the management of RA. Here, initially, we identify that Ras homolog gene family member A (RhoA) is a pivotal target in inducing osteoclastogenesis of macrophages. Subsequently, we develop a strategy termed specific macrophages RhoA targeting (SMART), in which phosphatidylserine (PS)-enriched macrophage membranes are engineered to deliver macrophage-specific promoter-containing CRISPR-Cas9 plasmids (SMART-Cas9), enabling targeted editing of RhoA in RA joint macrophages. Multiscale imaging techniques confirm the highly specific targeted effect of SMART-Cas9 on the macrophages of inflamed joints. SMART-Cas9 successfully reduces osteoclastogenesis by macrophages, thus mitigating bone erosion by modulating cytoskeletal dynamics and immune balance in inflammatory arthritis, representing a therapeutic avenue for RA and other inflammatory bone diseases.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.