Reza Arefnezhd, Amir Modarresi Chahardehi, Amirmasoud Asadi, Mahammad Mehdi Shadravan, Abbas Shariati, Aryan Rezaee, Mehrsa Radmanesh, Mohammadreza Nazarian, Maryam Helfi, Mohammad Saeed Soleimani Meigoli, Hossein Motedayyen, Fatemeh Rezaei-Tazangi, Marziye Ranjbar Tavakoli
{"title":"The function of chaperones in the radioresistance of glioblastoma: a new insight into the current knowledge.","authors":"Reza Arefnezhd, Amir Modarresi Chahardehi, Amirmasoud Asadi, Mahammad Mehdi Shadravan, Abbas Shariati, Aryan Rezaee, Mehrsa Radmanesh, Mohammadreza Nazarian, Maryam Helfi, Mohammad Saeed Soleimani Meigoli, Hossein Motedayyen, Fatemeh Rezaei-Tazangi, Marziye Ranjbar Tavakoli","doi":"10.1007/s10014-025-00501-7","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy remains a cornerstone of brain tumor treatment; however, its effectiveness is frequently undermined by the development of radioresistance. This review highlights the pivotal role of molecular chaperones in promoting radioresistance and explores the potential to increase radioresistance in brain cancers, particularly glioblastoma (GBM). Among chaperones, heat shock proteins (HSPs), such as HSP70 and HSP90, have been identified as key contributors to radioresistance, acting through mechanisms that include the maintenance of protein homeostasis, enhancement of DNA repair processes, and protection of cancer stem cells. Specifically, HSP70 and HSP90 are crucial in stabilizing oncogenic proteins and preventing apoptosis, thus enabling tumor survival during radiotherapy. Also, HSP27 and GRP78 are involved in the radioresistance of brain tumors mainly by suppressing cell death and enhancing tumor stem cell propagation. Emerging evidence also suggests that targeting these chaperones, in combination with radiotherapy, can enhance tumor radiosensitivity, offering promising therapeutic strategies. Recent studies have revealed novel aspects of chaperone-mediated autophagy and interaction with non-coding RNAs, providing deeper insights into the molecular mechanisms underlying radioresistance. This review also addresses the potential of combining chaperone-targeted therapies, such as HSP90 inhibitors, with radiotherapy to overcome resistance. Ultimately, understanding these mechanisms may pave the way for innovative clinical applications and personalized therapeutic approaches in brain tumor treatment.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Tumor Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10014-025-00501-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiotherapy remains a cornerstone of brain tumor treatment; however, its effectiveness is frequently undermined by the development of radioresistance. This review highlights the pivotal role of molecular chaperones in promoting radioresistance and explores the potential to increase radioresistance in brain cancers, particularly glioblastoma (GBM). Among chaperones, heat shock proteins (HSPs), such as HSP70 and HSP90, have been identified as key contributors to radioresistance, acting through mechanisms that include the maintenance of protein homeostasis, enhancement of DNA repair processes, and protection of cancer stem cells. Specifically, HSP70 and HSP90 are crucial in stabilizing oncogenic proteins and preventing apoptosis, thus enabling tumor survival during radiotherapy. Also, HSP27 and GRP78 are involved in the radioresistance of brain tumors mainly by suppressing cell death and enhancing tumor stem cell propagation. Emerging evidence also suggests that targeting these chaperones, in combination with radiotherapy, can enhance tumor radiosensitivity, offering promising therapeutic strategies. Recent studies have revealed novel aspects of chaperone-mediated autophagy and interaction with non-coding RNAs, providing deeper insights into the molecular mechanisms underlying radioresistance. This review also addresses the potential of combining chaperone-targeted therapies, such as HSP90 inhibitors, with radiotherapy to overcome resistance. Ultimately, understanding these mechanisms may pave the way for innovative clinical applications and personalized therapeutic approaches in brain tumor treatment.
期刊介绍:
Brain Tumor Pathology is the official journal of the Japan Society of Brain Tumor Pathology. This international journal documents the latest research and topical debate in all clinical and experimental fields relating to brain tumors, especially brain tumor pathology. The journal has been published since 1983 and has been recognized worldwide as a unique journal of high quality. The journal welcomes the submission of manuscripts from any country. Membership in the society is not a prerequisite for submission. The journal publishes original articles, case reports, rapid short communications, instructional lectures, review articles, letters to the editor, and topics.Review articles and Topics may be recommended at the annual meeting of the Japan Society of Brain Tumor Pathology. All contributions should be aimed at promoting international scientific collaboration.