Phase and gain stability for adaptive dynamical networks.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-05-01 DOI:10.1063/5.0249706
Nina Kastendiek, Jakob Niehues, Robin Delabays, Thilo Gross, Frank Hellmann
{"title":"Phase and gain stability for adaptive dynamical networks.","authors":"Nina Kastendiek, Jakob Niehues, Robin Delabays, Thilo Gross, Frank Hellmann","doi":"10.1063/5.0249706","DOIUrl":null,"url":null,"abstract":"<p><p>In adaptive dynamical networks, the dynamics of the nodes and the edges influence each other. We show that we can treat such systems as a closed feedback loop between edge and node dynamics. Using recent advances on the stability of feedback systems from control theory, we derive local, sufficient conditions for steady states of such systems to be linearly stable. These conditions are local in the sense that they are written entirely in terms of the (linearized) behavior of the edges and nodes. We apply these conditions to the Kuramoto model with inertia written in an adaptive form and the adaptive Kuramoto model. For the former, we recover a classic result, and for the latter, we show that our sufficient conditions match necessary conditions where the latter are available, thus completely settling the question of linear stability in this setting. The method we introduce can be readily applied to a vast class of systems. It enables straightforward evaluation of stability in highly heterogeneous systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0249706","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In adaptive dynamical networks, the dynamics of the nodes and the edges influence each other. We show that we can treat such systems as a closed feedback loop between edge and node dynamics. Using recent advances on the stability of feedback systems from control theory, we derive local, sufficient conditions for steady states of such systems to be linearly stable. These conditions are local in the sense that they are written entirely in terms of the (linearized) behavior of the edges and nodes. We apply these conditions to the Kuramoto model with inertia written in an adaptive form and the adaptive Kuramoto model. For the former, we recover a classic result, and for the latter, we show that our sufficient conditions match necessary conditions where the latter are available, thus completely settling the question of linear stability in this setting. The method we introduce can be readily applied to a vast class of systems. It enables straightforward evaluation of stability in highly heterogeneous systems.

自适应动态网络的相位和增益稳定性。
在自适应动态网络中,节点和边缘的动态相互影响。我们表明,我们可以把这样的系统作为边缘和节点动力学之间的闭环反馈回路。利用控制理论中反馈系统稳定性研究的最新进展,我们得到了反馈系统稳定状态线性稳定的局部充分条件。这些条件是局部的,因为它们完全是根据边和节点的(线性化)行为来写的。我们将这些条件应用于具有自适应形式的惯性的Kuramoto模型和自适应Kuramoto模型。对于前者,我们恢复了一个经典的结果,对于后者,我们证明了我们的充分条件与必要条件相匹配,从而完全解决了这种情况下的线性稳定性问题。我们介绍的方法可以很容易地应用于大量的系统。它可以直接评估高度异构系统的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信