Oliver Mortusewicz, James Haslam, Helge Gad, Thomas Helleday
{"title":"Uracil-induced replication stress drives mutations, genome instability, anti-cancer treatment efficacy, and resistance","authors":"Oliver Mortusewicz, James Haslam, Helge Gad, Thomas Helleday","doi":"10.1016/j.molcel.2025.04.015","DOIUrl":null,"url":null,"abstract":"Uracil incorporation into DNA, as a result of nucleotide pool imbalances or cytosine deamination (e.g., through APOBEC3A/3B), can result in replication stress and is the most common source of mutations in cancer and aging. Despite the critical role of uracil in genome instability, cancer development, and cancer therapy, only now is there emerging data on its impact on fundamental processes such as DNA replication and genome stability. Removal of uracil from DNA by base excision repair (BER) can generate a DNA single-strand break (SSB), which can trigger homologous recombination (HR) repair or replication fork collapse and cell death. Unprocessed uracil can also induce replication stress directly and independently of BER by slowing down replication forks, leading to single-stranded DNA (ssDNA) gaps. In this perspective, we review how genomic uracil induces replication stress, the therapeutic implications of targeting uracil-induced vulnerabilities, and potential strategies to exploit these mechanisms in cancer treatment.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"96 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.04.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Uracil incorporation into DNA, as a result of nucleotide pool imbalances or cytosine deamination (e.g., through APOBEC3A/3B), can result in replication stress and is the most common source of mutations in cancer and aging. Despite the critical role of uracil in genome instability, cancer development, and cancer therapy, only now is there emerging data on its impact on fundamental processes such as DNA replication and genome stability. Removal of uracil from DNA by base excision repair (BER) can generate a DNA single-strand break (SSB), which can trigger homologous recombination (HR) repair or replication fork collapse and cell death. Unprocessed uracil can also induce replication stress directly and independently of BER by slowing down replication forks, leading to single-stranded DNA (ssDNA) gaps. In this perspective, we review how genomic uracil induces replication stress, the therapeutic implications of targeting uracil-induced vulnerabilities, and potential strategies to exploit these mechanisms in cancer treatment.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.