Uracil-induced replication stress drives mutations, genome instability, anti-cancer treatment efficacy, and resistance

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Oliver Mortusewicz, James Haslam, Helge Gad, Thomas Helleday
{"title":"Uracil-induced replication stress drives mutations, genome instability, anti-cancer treatment efficacy, and resistance","authors":"Oliver Mortusewicz, James Haslam, Helge Gad, Thomas Helleday","doi":"10.1016/j.molcel.2025.04.015","DOIUrl":null,"url":null,"abstract":"Uracil incorporation into DNA, as a result of nucleotide pool imbalances or cytosine deamination (e.g., through APOBEC3A/3B), can result in replication stress and is the most common source of mutations in cancer and aging. Despite the critical role of uracil in genome instability, cancer development, and cancer therapy, only now is there emerging data on its impact on fundamental processes such as DNA replication and genome stability. Removal of uracil from DNA by base excision repair (BER) can generate a DNA single-strand break (SSB), which can trigger homologous recombination (HR) repair or replication fork collapse and cell death. Unprocessed uracil can also induce replication stress directly and independently of BER by slowing down replication forks, leading to single-stranded DNA (ssDNA) gaps. In this perspective, we review how genomic uracil induces replication stress, the therapeutic implications of targeting uracil-induced vulnerabilities, and potential strategies to exploit these mechanisms in cancer treatment.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"96 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.04.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Uracil incorporation into DNA, as a result of nucleotide pool imbalances or cytosine deamination (e.g., through APOBEC3A/3B), can result in replication stress and is the most common source of mutations in cancer and aging. Despite the critical role of uracil in genome instability, cancer development, and cancer therapy, only now is there emerging data on its impact on fundamental processes such as DNA replication and genome stability. Removal of uracil from DNA by base excision repair (BER) can generate a DNA single-strand break (SSB), which can trigger homologous recombination (HR) repair or replication fork collapse and cell death. Unprocessed uracil can also induce replication stress directly and independently of BER by slowing down replication forks, leading to single-stranded DNA (ssDNA) gaps. In this perspective, we review how genomic uracil induces replication stress, the therapeutic implications of targeting uracil-induced vulnerabilities, and potential strategies to exploit these mechanisms in cancer treatment.
尿嘧啶诱导的复制应激驱动突变、基因组不稳定、抗癌治疗效果和耐药性
由于核苷酸池失衡或胞嘧啶脱氨作用(例如通过APOBEC3A/3B),尿嘧啶进入DNA可导致复制应激,是癌症和衰老中最常见的突变来源。尽管尿嘧啶在基因组不稳定性、癌症发展和癌症治疗中起着关键作用,但直到现在才有新的数据表明它对DNA复制和基因组稳定性等基本过程的影响。通过碱基切除修复(BER)从DNA中去除尿嘧啶可产生DNA单链断裂(SSB),从而引发同源重组(HR)修复或复制叉崩溃和细胞死亡。未加工的尿嘧啶也可以通过减缓复制分叉而直接独立于BER诱导复制应激,导致单链DNA (ssDNA)间隙。从这个角度来看,我们回顾了基因组尿嘧啶如何诱导复制应激,靶向尿嘧啶诱导的脆弱性的治疗意义,以及利用这些机制在癌症治疗中的潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信