Amanjot Kaur, Nima Valizadeh, Devki Nandan, Tomasz Szydlo, James R. K. Rajasekaran, Vijay Kumar, Mutaz Barika, Jun Liang, Rajiv Ranjan, Rana Omer
{"title":"Cybersecurity Challenges in the EV Charging Ecosystem","authors":"Amanjot Kaur, Nima Valizadeh, Devki Nandan, Tomasz Szydlo, James R. K. Rajasekaran, Vijay Kumar, Mutaz Barika, Jun Liang, Rajiv Ranjan, Rana Omer","doi":"10.1145/3735662","DOIUrl":null,"url":null,"abstract":"The growing adoption of intelligent Electric Vehicles (EVs) has also created an opportunity for malicious actors to initiate attacks on the EV infrastructure, which can include a number of data exchange protocols across the various entities that are part of the EV charging ecosystem. These protocols possess a range of underlying vulnerabilities that attackers can exploit to disrupt the regular flow of information and energy. While researchers have considered vulnerabilities of particular components within an EV charging ecosystem, there is still a notable gap in vulnerability analysis of charging protocols and the potential threats to these. We investigate threat vectors within the most widely adopted protocols used in EV infrastructure, explore the potential impact of cyberattacks and suggest various mitigation techniques investigated in literature. Potential future research directions are also identified.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"78 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3735662","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The growing adoption of intelligent Electric Vehicles (EVs) has also created an opportunity for malicious actors to initiate attacks on the EV infrastructure, which can include a number of data exchange protocols across the various entities that are part of the EV charging ecosystem. These protocols possess a range of underlying vulnerabilities that attackers can exploit to disrupt the regular flow of information and energy. While researchers have considered vulnerabilities of particular components within an EV charging ecosystem, there is still a notable gap in vulnerability analysis of charging protocols and the potential threats to these. We investigate threat vectors within the most widely adopted protocols used in EV infrastructure, explore the potential impact of cyberattacks and suggest various mitigation techniques investigated in literature. Potential future research directions are also identified.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.