Komal Pekhale, Vinod Tiwari, Mansoor Hussain, Christy C. Bridges, Deborah L. Croteau, Moshe Levi, Avi Z. Rosenberg, Briana Santo, Xiaoping Yang, Tomasz Kulikowicz, Xiaoxin X. Wang, Jong-Hyuk Lee, Vilhelm A. Bohr
{"title":"Cockayne syndrome mice reflect human kidney disease and are defective in de novo NAD biosynthesis","authors":"Komal Pekhale, Vinod Tiwari, Mansoor Hussain, Christy C. Bridges, Deborah L. Croteau, Moshe Levi, Avi Z. Rosenberg, Briana Santo, Xiaoping Yang, Tomasz Kulikowicz, Xiaoxin X. Wang, Jong-Hyuk Lee, Vilhelm A. Bohr","doi":"10.1038/s41418-025-01522-7","DOIUrl":null,"url":null,"abstract":"<p>Cockayne Syndrome (CS) is a premature aging disorder caused by mutations in the CSA and CSB genes involved in DNA metabolism and other cellular processes. CS patients display many features including premature aging, neurodegeneration, and kidney abnormalities. Nicotinamide dinucleotide (NAD<sup>+</sup>) deprivation has been observed in CS patient-derived cells. NAD<sup>+</sup> has essential roles in regulating cellular health, stress responses, and renal homeostasis. While kidney dysfunction is a common feature in CS patients, its molecular pathogenesis is not understood. Here, we report that severe kidney pathology is present in CS A and B mice. We find that the NAD<sup>+</sup> biosynthetic pathways are impaired in kidneys from these mice. Using human renal tubular epithelial cells, we show that CSA/B downregulation causes persistent activation of the ATF3 transcription factor on the quinolinate phosphoribosyl transferase gene locus, a rate-limiting enzyme in de novo NAD<sup>+</sup> biosynthesis in the kidney, causing impaired transcription and deficient NAD<sup>+</sup> homeostasis.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"41 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01522-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cockayne Syndrome (CS) is a premature aging disorder caused by mutations in the CSA and CSB genes involved in DNA metabolism and other cellular processes. CS patients display many features including premature aging, neurodegeneration, and kidney abnormalities. Nicotinamide dinucleotide (NAD+) deprivation has been observed in CS patient-derived cells. NAD+ has essential roles in regulating cellular health, stress responses, and renal homeostasis. While kidney dysfunction is a common feature in CS patients, its molecular pathogenesis is not understood. Here, we report that severe kidney pathology is present in CS A and B mice. We find that the NAD+ biosynthetic pathways are impaired in kidneys from these mice. Using human renal tubular epithelial cells, we show that CSA/B downregulation causes persistent activation of the ATF3 transcription factor on the quinolinate phosphoribosyl transferase gene locus, a rate-limiting enzyme in de novo NAD+ biosynthesis in the kidney, causing impaired transcription and deficient NAD+ homeostasis.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.