Neighbor sum distinguishable $$k$$ -edge colorings of joint graphs

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiangzhi Tu, Peng Li, Yangjing Long, Aifa Wang
{"title":"Neighbor sum distinguishable $$k$$ -edge colorings of joint graphs","authors":"Xiangzhi Tu, Peng Li, Yangjing Long, Aifa Wang","doi":"10.1007/s10878-025-01309-z","DOIUrl":null,"url":null,"abstract":"<p>In a graph <i>G</i>, the normal <i>k</i>-edge coloring <span>\\(\\sigma \\)</span> is defined as the conventional edge coloring of <i>G</i> using the color set <span>\\(\\left[ k \\right] =\\left\\{ 1,2,\\cdots ,k \\right\\} \\)</span>. If the condition <span>\\(S\\left( u \\right) \\ne S\\left( v \\right) \\)</span> holds for any edge <span>\\(uv\\in E\\left( G \\right) \\)</span>, where <span>\\(S\\left( u \\right) =\\sum \\nolimits _{uv\\in E\\left( G \\right) }{\\sigma \\left( uv \\right) }\\)</span>, then <span>\\(\\sigma \\)</span> is termed a neighbor sum distinguishable <i>k</i>-edge coloring of the graph <i>G</i>, abbreviated as <i>k</i>-VSDEC. The minimum number of colors <span>\\( k \\)</span> needed for this type of coloring is referred to as the neighbor sum distinguishable edge chromatic number of <span>\\( G \\)</span>, represented as <span>\\( \\chi '_{\\varSigma }(G) \\)</span>. This paper examines neighbor sum distinguishable <i>k</i>-edge colorings in the joint graphs of an <i>h</i>-order path <span>\\({{P}_{h}}\\)</span> and an <span>\\(\\left( z+1 \\right) \\)</span>-order star <span>\\({{S}_{z}}\\)</span>, providing exact values for their neighboring and distinguishable edge coloring numbers, which are either <span>\\(\\varDelta \\)</span> or <span>\\(\\varDelta +1\\)</span>.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"39 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01309-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In a graph G, the normal k-edge coloring \(\sigma \) is defined as the conventional edge coloring of G using the color set \(\left[ k \right] =\left\{ 1,2,\cdots ,k \right\} \). If the condition \(S\left( u \right) \ne S\left( v \right) \) holds for any edge \(uv\in E\left( G \right) \), where \(S\left( u \right) =\sum \nolimits _{uv\in E\left( G \right) }{\sigma \left( uv \right) }\), then \(\sigma \) is termed a neighbor sum distinguishable k-edge coloring of the graph G, abbreviated as k-VSDEC. The minimum number of colors \( k \) needed for this type of coloring is referred to as the neighbor sum distinguishable edge chromatic number of \( G \), represented as \( \chi '_{\varSigma }(G) \). This paper examines neighbor sum distinguishable k-edge colorings in the joint graphs of an h-order path \({{P}_{h}}\) and an \(\left( z+1 \right) \)-order star \({{S}_{z}}\), providing exact values for their neighboring and distinguishable edge coloring numbers, which are either \(\varDelta \) or \(\varDelta +1\).

相邻和可分辨$$k$$ -联合图的边着色
在图G中,正常的k边着色\(\sigma \)被定义为使用颜色集\(\left[ k \right] =\left\{ 1,2,\cdots ,k \right\} \)的G的常规边着色。如果条件\(S\left( u \right) \ne S\left( v \right) \)对任意边\(uv\in E\left( G \right) \)成立,其中\(S\left( u \right) =\sum \nolimits _{uv\in E\left( G \right) }{\sigma \left( uv \right) }\),则\(\sigma \)被称为图G的邻居和可区分的k边着色,缩写为k-VSDEC。这种类型着色所需的最小颜色数\( k \)称为\( G \)的邻居和可区分边缘色数,表示为\( \chi '_{\varSigma }(G) \)。本文研究了h阶路径\({{P}_{h}}\)和\(\left( z+1 \right) \)阶星形\({{S}_{z}}\)的联合图中的相邻和可分辨k边着色,给出了它们的相邻和可分辨边着色数\(\varDelta \)或\(\varDelta +1\)的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信