Topological Flat-Band-Driven Metallic Thermoelectricity

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Fabian Garmroudi, Jennifer Coulter, Illia Serhiienko, Simone Di Cataldo, Michael Parzer, Alexander Riss, Matthias Grasser, Simon Stockinger, Sergii Khmelevskyi, Kacper Pryga, Bartlomiej Wiendlocha, Karsten Held, Takao Mori, Ernst Bauer, Antoine Georges, Andrej Pustogow
{"title":"Topological Flat-Band-Driven Metallic Thermoelectricity","authors":"Fabian Garmroudi, Jennifer Coulter, Illia Serhiienko, Simone Di Cataldo, Michael Parzer, Alexander Riss, Matthias Grasser, Simon Stockinger, Sergii Khmelevskyi, Kacper Pryga, Bartlomiej Wiendlocha, Karsten Held, Takao Mori, Ernst Bauer, Antoine Georges, Andrej Pustogow","doi":"10.1103/physrevx.15.021054","DOIUrl":null,"url":null,"abstract":"Materials where flattened electronic dispersions arise from destructive phase interference, rather than localized orbitals, have emerged as promising platforms for studying emergent quantum phenomena. Crucial next steps involve tuning such flat bands to the Fermi level, where they can be studied at low energy scales, and assessing their potential for practical applications. Here, we show that the interplay of highly dispersive and ultraflat bands inherent to these systems can lead to extreme interband scattering-induced electron-hole asymmetry, which can be harnessed in thermoelectrics. Our comprehensive theoretical and experimental investigation of Ni</a:mi>3</a:mn></a:msub>In</a:mi>1</a:mn>−</a:mo>x</a:mi></a:mrow></a:msub>Sn</a:mi>x</a:mi></a:msub></a:math> kagome metals supports this concept, showing that it could lead to thermoelectric performance on par with state-of-the-art semiconductors such as <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>Bi</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi>Te</c:mi><c:mn>3</c:mn></c:msub></c:math>. In <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msub><e:mi>Ni</e:mi><e:mn>3</e:mn></e:msub><e:mi>In</e:mi></e:math>, scattering-induced electron-hole asymmetry is, however, subdued by an exotic conduction mechanism arising from quantum tunneling of charge carriers between Dirac bands, unrelated to the flat band itself. We outline strategies to selectively switch off this tunneling transport through negative chemical pressure or strain. Our study proposes a new direction to explore in topological flat-band systems and vice versa introduces a novel tuning knob for thermoelectric materials. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"49 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021054","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Materials where flattened electronic dispersions arise from destructive phase interference, rather than localized orbitals, have emerged as promising platforms for studying emergent quantum phenomena. Crucial next steps involve tuning such flat bands to the Fermi level, where they can be studied at low energy scales, and assessing their potential for practical applications. Here, we show that the interplay of highly dispersive and ultraflat bands inherent to these systems can lead to extreme interband scattering-induced electron-hole asymmetry, which can be harnessed in thermoelectrics. Our comprehensive theoretical and experimental investigation of Ni3In1−xSnx kagome metals supports this concept, showing that it could lead to thermoelectric performance on par with state-of-the-art semiconductors such as Bi2Te3. In Ni3In, scattering-induced electron-hole asymmetry is, however, subdued by an exotic conduction mechanism arising from quantum tunneling of charge carriers between Dirac bands, unrelated to the flat band itself. We outline strategies to selectively switch off this tunneling transport through negative chemical pressure or strain. Our study proposes a new direction to explore in topological flat-band systems and vice versa introduces a novel tuning knob for thermoelectric materials. Published by the American Physical Society 2025
拓扑平带驱动的金属热电
由破坏性相位干涉而不是局域轨道产生的扁平电子色散的材料,已经成为研究新兴量子现象的有希望的平台。接下来的关键步骤包括将这些平坦带调整到费米能级,在那里它们可以在低能量尺度上进行研究,并评估它们的实际应用潜力。在这里,我们展示了这些系统固有的高色散和超平坦带的相互作用可以导致极端的带间散射诱导的电子-空穴不对称,这可以在热电中利用。我们对Ni3In1−xSnx kagome金属的全面理论和实验研究支持这一概念,表明它可以导致与最先进的半导体(如Bi2Te3)相当的热电性能。然而,在Ni3In中,散射诱导的电子-空穴不对称被一种奇异的传导机制所抑制,这种机制是由狄拉克带之间载流子的量子隧穿引起的,与平带本身无关。我们概述了通过负化学压力或应变选择性地关闭这种隧道运输的策略。我们的研究提出了探索拓扑平带系统的新方向,反之亦然,为热电材料引入了一种新的调谐旋钮。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信