{"title":"Dissecting small cell carcinoma of the esophagus ecosystem by single-cell transcriptomic analysis","authors":"Hao-Xiang Wu, Yu-Kun Chen, Ying-Nan Wang, Jia-Ying Chen, Shu-Jing Xiang, Ying Jin, Zi-Xian Wang, Chun-Yu Huang, Lu-Ping Yang, Ye He, Wen-Long Guan, Long Bai, Yan-Xing Chen, Min Wang, Chao-Ye Wang, Run-Jie Huang, Yue Huang, Jin-Ling Zhang, Zhi-Da Lv, Si-Qi Yang, Rui-Hua Xu, Qi Zhao, Feng Wang","doi":"10.1186/s12943-025-02335-5","DOIUrl":null,"url":null,"abstract":"Small cell carcinoma of the esophagus (SCCE) is an aggressive and rare neuroendocrine malignancy with poor prognosis. Here, we firstly performed single-cell transcriptional profiling derived from 10 SCCE patients, with normal esophageal mucosa, adjacent non-malignant tissue and tumors from esophageal squamous cell carcinoma (ESCC) as reference. We observed enrichment of activated regulatory T cells and an angiogenesis-induced niche existed in SCCE compared with ESCC, revealing an immune suppressive and vessel-induced tumor microenvironment (TME) in SCCE. Totally, we identified five TME ecotypes (EC1 ~ 5). Notably, EC1 was highly enriched in SCCE, associating with molecular subtyping and survival outcomes. To dissecting heterogeneity of epithelium in SCCE, we constructed eight transcriptional metaprograms (MPs) that underscored significant heterogeneity of SCCE. High expression of MP5 was linked to neuroendocrine phenotype and poor clinical survival. Collectively, these results, for the first time, systematically deciphered the TME and epithelial heterogeneity of SCCE and provided evidences that SCCE patients might benefit from anti-angiogenesis therapy.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"29 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02335-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small cell carcinoma of the esophagus (SCCE) is an aggressive and rare neuroendocrine malignancy with poor prognosis. Here, we firstly performed single-cell transcriptional profiling derived from 10 SCCE patients, with normal esophageal mucosa, adjacent non-malignant tissue and tumors from esophageal squamous cell carcinoma (ESCC) as reference. We observed enrichment of activated regulatory T cells and an angiogenesis-induced niche existed in SCCE compared with ESCC, revealing an immune suppressive and vessel-induced tumor microenvironment (TME) in SCCE. Totally, we identified five TME ecotypes (EC1 ~ 5). Notably, EC1 was highly enriched in SCCE, associating with molecular subtyping and survival outcomes. To dissecting heterogeneity of epithelium in SCCE, we constructed eight transcriptional metaprograms (MPs) that underscored significant heterogeneity of SCCE. High expression of MP5 was linked to neuroendocrine phenotype and poor clinical survival. Collectively, these results, for the first time, systematically deciphered the TME and epithelial heterogeneity of SCCE and provided evidences that SCCE patients might benefit from anti-angiogenesis therapy.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.