{"title":"MMRNet: Ensemble deep learning models for predicting mismatch repair deficiency in endometrial cancer from histopathological images.","authors":"Li-Li Liu, Bing-Zhong Jing, Xuan Liu, Rong-Gang Li, Zhao Wan, Jiang-Yu Zhang, Xiao-Ming Ouyang, Qing-Nuan Kong, Xiao-Ling Kang, Dong-Dong Wang, Hao-Hua Chen, Zi-Han Zhao, Hao-Yu Liang, Ma-Yan Huang, Cheng-You Zheng, Xia Yang, Xue-Yi Zheng, Xin-Ke Zhang, Li-Jun Wei, Chao Cao, Hong-Yi Gao, Rong-Zhen Luo, Mu-Yan Cai","doi":"10.1016/j.xcrm.2025.102099","DOIUrl":null,"url":null,"abstract":"<p><p>Combining molecular classification with clinicopathologic methods improves risk assessment and chooses therapies for endometrial cancer (EC). Detecting mismatch repair (MMR) deficiencies in EC is crucial for screening Lynch syndrome and identifying immunotherapy candidates. An affordable and accessible tool is urgently needed to determine MMR status in EC patients. We introduce MMRNet, a deep convolutional neural network designed to predict MMR-deficient EC from whole-slide images stained with hematoxylin and eosin. MMRNet demonstrates strong performance, achieving an average area under the receiver operating characteristic curve (AUROC) of 0.897, with a sensitivity of 0.628 and a specificity of 0.949 in internal cross-validation. External validation using three additional datasets results in AUROCs of 0.790, 0.807, and 0.863. Employing a human-machine fusion approach notably improves diagnostic accuracy. MMRNet presents an effective method for identifying EC cases for confirmatory MMR testing and may assist in selecting candidates for immunotherapy.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102099"},"PeriodicalIF":11.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102099","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Combining molecular classification with clinicopathologic methods improves risk assessment and chooses therapies for endometrial cancer (EC). Detecting mismatch repair (MMR) deficiencies in EC is crucial for screening Lynch syndrome and identifying immunotherapy candidates. An affordable and accessible tool is urgently needed to determine MMR status in EC patients. We introduce MMRNet, a deep convolutional neural network designed to predict MMR-deficient EC from whole-slide images stained with hematoxylin and eosin. MMRNet demonstrates strong performance, achieving an average area under the receiver operating characteristic curve (AUROC) of 0.897, with a sensitivity of 0.628 and a specificity of 0.949 in internal cross-validation. External validation using three additional datasets results in AUROCs of 0.790, 0.807, and 0.863. Employing a human-machine fusion approach notably improves diagnostic accuracy. MMRNet presents an effective method for identifying EC cases for confirmatory MMR testing and may assist in selecting candidates for immunotherapy.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.