Transition path dynamics for one-dimensional run and tumble particle.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-05-01 DOI:10.1063/5.0249277
Hua Li, Yong Xu, Ralf Metzler, Jianwei Shen, Kheder Suleiman
{"title":"Transition path dynamics for one-dimensional run and tumble particle.","authors":"Hua Li, Yong Xu, Ralf Metzler, Jianwei Shen, Kheder Suleiman","doi":"10.1063/5.0249277","DOIUrl":null,"url":null,"abstract":"<p><p>We study transition path properties such as the transient probability density, transition path time and its distribution, splitting probability, coefficient of variation, and the transition path shape of active run and tumble particles for unconstrained motion. In particular, we provide the theoretical description of the transition path properties using forward and backward master equations. The theoretical results are supported by Monte Carlo simulations. In particular, we prove that the system dynamics do not feature a symmetry breaking in the transition path properties for the case of run and tumble particles considered here. The symmetry of the transition path properties is shown to emerge for variations of the particle tumbling rate, particle speed, and transition path region.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0249277","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study transition path properties such as the transient probability density, transition path time and its distribution, splitting probability, coefficient of variation, and the transition path shape of active run and tumble particles for unconstrained motion. In particular, we provide the theoretical description of the transition path properties using forward and backward master equations. The theoretical results are supported by Monte Carlo simulations. In particular, we prove that the system dynamics do not feature a symmetry breaking in the transition path properties for the case of run and tumble particles considered here. The symmetry of the transition path properties is shown to emerge for variations of the particle tumbling rate, particle speed, and transition path region.

一维运动和翻滚粒子的过渡路径动力学。
我们研究了无约束运动中主动奔跑和翻滚粒子的瞬态概率密度、转移路径时间及其分布、分裂概率、变异系数和转移路径形状等转移路径特性。特别地,我们用正向和反向主方程提供了过渡路径性质的理论描述。理论结果得到了蒙特卡罗模拟的支持。特别地,我们证明了在这里考虑的奔跑和翻滚粒子的情况下,系统动力学在转移路径属性中不具有对称性破缺。随着粒子翻滚速率、粒子速度和跃迁路径区域的变化,跃迁路径性质呈现对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信