{"title":"Cover times with stochastic resetting.","authors":"Samantha Linn, Sean D Lawley","doi":"10.1063/5.0260643","DOIUrl":null,"url":null,"abstract":"<p><p>Cover times quantify the speed of exhaustive search. In this work, we approximate the moments of cover times of a wide range of stochastic search processes in d-dimensional continuous space and on an arbitrary discrete network under frequent stochastic resetting. These approximations apply to a large class of resetting time distributions and search processes including diffusion, run-and-tumble particles, and Markov jump processes. We illustrate these results in several examples; in the case of diffusive search, we show that the errors of our approximations vanish exponentially fast. Finally, we derive a criterion for when endowing a discrete state search process with minimal stochastic resetting reduces the mean cover time.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0260643","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cover times quantify the speed of exhaustive search. In this work, we approximate the moments of cover times of a wide range of stochastic search processes in d-dimensional continuous space and on an arbitrary discrete network under frequent stochastic resetting. These approximations apply to a large class of resetting time distributions and search processes including diffusion, run-and-tumble particles, and Markov jump processes. We illustrate these results in several examples; in the case of diffusive search, we show that the errors of our approximations vanish exponentially fast. Finally, we derive a criterion for when endowing a discrete state search process with minimal stochastic resetting reduces the mean cover time.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.