Lipopolysaccharide preconditioning augments the antibacterial activity of renal macrophages and ameliorates acute kidney injury caused by Staphylococcus aureus bacteremia in mice.
{"title":"Lipopolysaccharide preconditioning augments the antibacterial activity of renal macrophages and ameliorates acute kidney injury caused by <i>Staphylococcus aureus</i> bacteremia in mice.","authors":"Keiko Tanoue, Manabu Kinoshita, Bradley M Kearney, Seigo Ito, Hiroyasu Goto, Aoi Yamashiro, Tsugumi Fukunaga, Hiroki Sato, Kazuma Mori, Koji Kuwata, Hidehito Matsubara, Azusa Kato, Masahiro Nakashima, Hiroyuki Nakashima, Toshihiko Imakiire, Naoki Oshima","doi":"10.1177/17534259251335770","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionRepeated injections of low-dose lipopolysaccharide (LPS preconditioning) augment the antibacterial activity of liver macrophages. In this study, a mouse model of acute kidney injury (AKI) induced by <i>Staphylococcus aureus (S. aureus)</i> bacteremia was used to investigate the effects of LPS preconditioning on renal macrophages.MethodsEight-week-old C57BL/6J mice were preconditioned with either low-dose LPS (5 μg/kg) or the vehicle for three consecutive days. Kidney immune cells were isolated, and the antibacterial activity of renal macrophages was assessed by pHrodo<sup>TM</sup>-labeled <i>S. aureus in vitro</i>. Twenty-four hours after the last LPS injection, the mice were intravenously challenged with <i>S. aureus</i> (2 × 10<sup>7</sup> CFU) and their renal function was evaluated to identify the changes.ResultsMouse renal macrophages exhibited a weak antibacterial activity against <i>S. aureus</i> compared with the liver and spleen macrophages. LPS preconditioning elevated the count of F4/80<sup>low</sup> CD11b<sup>high</sup> bone marrow-derived macrophages (BMDM) and augmented their antibacterial activities in the mouse kidney. It also enhanced the antibacterial activity of F4/80<sup>high</sup> CD11b<sup>low</sup> tissue-resident macrophages (TRM) without altering their abundance. LPS preconditioning lowered the bacterial propagation in the kidney in the challenged mice and ameliorated sepsis-associated AKI compared with the control. LPS preconditioning upregulated the CD80/CD206 expression (M1/M2) ratio in BMDMs in the kidney before bacterial challenge and reduced their M1/M2 ratio following <i>S. aureus</i> challenge compared with the control.ConclusionLPS preconditioning enhanced the antibacterial activity of the renal macrophages against <i>S. aureus</i> and suppressed the excessive activation of M1 macrophages following <i>S. aureus</i> challenge, resulting in the amelioration of AKI caused by <i>S. aureus</i> bacteremia.</p>","PeriodicalId":13676,"journal":{"name":"Innate Immunity","volume":"31 ","pages":"17534259251335770"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innate Immunity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/17534259251335770","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionRepeated injections of low-dose lipopolysaccharide (LPS preconditioning) augment the antibacterial activity of liver macrophages. In this study, a mouse model of acute kidney injury (AKI) induced by Staphylococcus aureus (S. aureus) bacteremia was used to investigate the effects of LPS preconditioning on renal macrophages.MethodsEight-week-old C57BL/6J mice were preconditioned with either low-dose LPS (5 μg/kg) or the vehicle for three consecutive days. Kidney immune cells were isolated, and the antibacterial activity of renal macrophages was assessed by pHrodoTM-labeled S. aureus in vitro. Twenty-four hours after the last LPS injection, the mice were intravenously challenged with S. aureus (2 × 107 CFU) and their renal function was evaluated to identify the changes.ResultsMouse renal macrophages exhibited a weak antibacterial activity against S. aureus compared with the liver and spleen macrophages. LPS preconditioning elevated the count of F4/80low CD11bhigh bone marrow-derived macrophages (BMDM) and augmented their antibacterial activities in the mouse kidney. It also enhanced the antibacterial activity of F4/80high CD11blow tissue-resident macrophages (TRM) without altering their abundance. LPS preconditioning lowered the bacterial propagation in the kidney in the challenged mice and ameliorated sepsis-associated AKI compared with the control. LPS preconditioning upregulated the CD80/CD206 expression (M1/M2) ratio in BMDMs in the kidney before bacterial challenge and reduced their M1/M2 ratio following S. aureus challenge compared with the control.ConclusionLPS preconditioning enhanced the antibacterial activity of the renal macrophages against S. aureus and suppressed the excessive activation of M1 macrophages following S. aureus challenge, resulting in the amelioration of AKI caused by S. aureus bacteremia.
期刊介绍:
Innate Immunity is a highly ranked, peer-reviewed scholarly journal and is the official journal of the International Endotoxin & Innate Immunity Society (IEIIS). The journal welcomes manuscripts from researchers actively working on all aspects of innate immunity including biologically active bacterial, viral, fungal, parasitic, and plant components, as well as relevant cells, their receptors, signaling pathways, and induced mediators. The aim of the Journal is to provide a single, interdisciplinary forum for the dissemination of new information on innate immunity in humans, animals, and plants to researchers. The Journal creates a vehicle for the publication of articles encompassing all areas of research, basic, applied, and clinical. The subject areas of interest include, but are not limited to, research in biochemistry, biophysics, cell biology, chemistry, clinical medicine, immunology, infectious disease, microbiology, molecular biology, and pharmacology.