Hao Sun, Ling-Ao Bu, Xin-Yue Zhang, Zhi-Ruo Zhang, Shao-Cong Su, Di Guo, Cong-Fen Gao, Subba Reddy Palli, Jackson Champer, Shun-Fan Wu
{"title":"β2-tubulin regulates the development and migration of eupyrene sperm in Spodoptera frugiperda.","authors":"Hao Sun, Ling-Ao Bu, Xin-Yue Zhang, Zhi-Ruo Zhang, Shao-Cong Su, Di Guo, Cong-Fen Gao, Subba Reddy Palli, Jackson Champer, Shun-Fan Wu","doi":"10.1007/s00018-025-05722-9","DOIUrl":null,"url":null,"abstract":"<p><p>Spermatogenesis is the basis of sexual reproduction and is essential for the propagation of insect populations. Understanding the process of spermatogenesis and identifying key genes involved in sperm function can aid in developing pest genetic control methods. The testis-specific gene β2-tubulin (B2t) is crucial for spermatogenesis in insects possessing monomorphic spermatids. However, the role of B2t in lepidopteran dimorphic spermatogenesis remains unclear. In this study, we explored the effect of B2t in the development of eupyrene and apyrene sperm in the Spodoptera frugiperda, a major global pest. Knockout of B2t resulted in male sterility. B2t mutations lead to abnormal development of eupyrene sperm and the inability of eupyrene sperm to transfer from the testis to the double ejaculatory ducts. However, disruption of B2t did not affect apyrene spermatogenesis and migration. Interestingly, we found that first mating with B2t-null males inhibited sperm fertilization from a second wild-type male. Cage studies and mathematical modeling analyses suggested that releasing excessive B2t-null males suppressed female fertility. Our study provides insights into dimorphic spermatogenesis in lepidopteran pests and an efficient molecular target for pest genetic control techniques.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"191"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05722-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spermatogenesis is the basis of sexual reproduction and is essential for the propagation of insect populations. Understanding the process of spermatogenesis and identifying key genes involved in sperm function can aid in developing pest genetic control methods. The testis-specific gene β2-tubulin (B2t) is crucial for spermatogenesis in insects possessing monomorphic spermatids. However, the role of B2t in lepidopteran dimorphic spermatogenesis remains unclear. In this study, we explored the effect of B2t in the development of eupyrene and apyrene sperm in the Spodoptera frugiperda, a major global pest. Knockout of B2t resulted in male sterility. B2t mutations lead to abnormal development of eupyrene sperm and the inability of eupyrene sperm to transfer from the testis to the double ejaculatory ducts. However, disruption of B2t did not affect apyrene spermatogenesis and migration. Interestingly, we found that first mating with B2t-null males inhibited sperm fertilization from a second wild-type male. Cage studies and mathematical modeling analyses suggested that releasing excessive B2t-null males suppressed female fertility. Our study provides insights into dimorphic spermatogenesis in lepidopteran pests and an efficient molecular target for pest genetic control techniques.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered