{"title":"Beyond traditional methods: nanomaterials pave the way for precise nutrient detection in nutritionally fortified foods.","authors":"Jianing Yang, Nan Cheng","doi":"10.1080/10408398.2025.2499618","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting trace elements in nutritionally fortified foods is essential for safeguarding public health, as these micronutrients play a critical role in various biological processes, including enzyme functionality, cellular metabolism, and the structural integrity of macromolecules; however, current analytical methods are often limited by high operational costs, complex sample preparation, and the requirement for specialized technical expertise. This review highlights the transformative potential of nanotechnology in addressing these challenges, showcasing how nanomaterials enhance trace element detection through specific ligand recognition, oxidation-reduction reactions, adsorption, enzyme-like activities, and resonance energy transfer mechanisms. We discuss the integration of monodentate, bidentate, and polydentate ligands in nanomaterial-based detection systems to improve specificity and stability, and explore the implications of technologies such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescence, electrochemical signal, and spectral signal for advancing detection capabilities. Incorporating nanomaterial-based detection systems with advanced data processing technologies and portable inspection equipment is anticipated to enhance analytical capabilities, paving the way for real-time monitoring that fortifies food safety protocols, ensuring the quality and safety of fortified foods and ultimately contributing to improved public health outcomes.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-36"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2499618","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting trace elements in nutritionally fortified foods is essential for safeguarding public health, as these micronutrients play a critical role in various biological processes, including enzyme functionality, cellular metabolism, and the structural integrity of macromolecules; however, current analytical methods are often limited by high operational costs, complex sample preparation, and the requirement for specialized technical expertise. This review highlights the transformative potential of nanotechnology in addressing these challenges, showcasing how nanomaterials enhance trace element detection through specific ligand recognition, oxidation-reduction reactions, adsorption, enzyme-like activities, and resonance energy transfer mechanisms. We discuss the integration of monodentate, bidentate, and polydentate ligands in nanomaterial-based detection systems to improve specificity and stability, and explore the implications of technologies such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescence, electrochemical signal, and spectral signal for advancing detection capabilities. Incorporating nanomaterial-based detection systems with advanced data processing technologies and portable inspection equipment is anticipated to enhance analytical capabilities, paving the way for real-time monitoring that fortifies food safety protocols, ensuring the quality and safety of fortified foods and ultimately contributing to improved public health outcomes.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.