Automated Bi-Ventricular Segmentation and Regional Cardiac Wall Motion Analysis for Rat Models of Pulmonary Hypertension.

IF 2.2 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Pulmonary Circulation Pub Date : 2025-05-12 eCollection Date: 2025-04-01 DOI:10.1002/pul2.70092
Marili Niglas, Nicoleta Baxan, Ali Ashek, Lin Zhao, Jinming Duan, Declan O'Regan, Timothy J W Dawes, Chen Nien-Chen, Chongyang Xie, Wenjia Bai, Lan Zhao
{"title":"Automated Bi-Ventricular Segmentation and Regional Cardiac Wall Motion Analysis for Rat Models of Pulmonary Hypertension.","authors":"Marili Niglas, Nicoleta Baxan, Ali Ashek, Lin Zhao, Jinming Duan, Declan O'Regan, Timothy J W Dawes, Chen Nien-Chen, Chongyang Xie, Wenjia Bai, Lan Zhao","doi":"10.1002/pul2.70092","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence-based cardiac motion mapping offers predictive insights into pulmonary hypertension (PH) disease progression and its impact on the heart. We proposed an automated deep learning pipeline for bi-ventricular segmentation and 3D wall motion analysis in PH rodent models for bridging the clinical developments. A data set of 163 short-axis cine cardiac magnetic resonance scans were collected longitudinally from monocrotaline (MCT) and Sugen-hypoxia (SuHx) PH rats and used for training a fully convolutional network for automated segmentation. The model produced an accurate annotation in < 1 s for each scan (Dice metric > 0.92). High-resolution atlas fitting was performed to produce 3D cardiac mesh models and calculate the regional wall motion between end-diastole and end-systole. Prominent right ventricular hypokinesia was observed in PH rats (-37.7% ± 12.2 MCT; -38.6% ± 6.9 SuHx) compared to healthy controls, attributed primarily to the loss in basal longitudinal and apical radial motion. This automated bi-ventricular rat-specific pipeline provided an efficient and novel translational tool for rodent studies in alignment with clinical cardiac imaging AI developments.</p>","PeriodicalId":20927,"journal":{"name":"Pulmonary Circulation","volume":"15 2","pages":"e70092"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary Circulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pul2.70092","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence-based cardiac motion mapping offers predictive insights into pulmonary hypertension (PH) disease progression and its impact on the heart. We proposed an automated deep learning pipeline for bi-ventricular segmentation and 3D wall motion analysis in PH rodent models for bridging the clinical developments. A data set of 163 short-axis cine cardiac magnetic resonance scans were collected longitudinally from monocrotaline (MCT) and Sugen-hypoxia (SuHx) PH rats and used for training a fully convolutional network for automated segmentation. The model produced an accurate annotation in < 1 s for each scan (Dice metric > 0.92). High-resolution atlas fitting was performed to produce 3D cardiac mesh models and calculate the regional wall motion between end-diastole and end-systole. Prominent right ventricular hypokinesia was observed in PH rats (-37.7% ± 12.2 MCT; -38.6% ± 6.9 SuHx) compared to healthy controls, attributed primarily to the loss in basal longitudinal and apical radial motion. This automated bi-ventricular rat-specific pipeline provided an efficient and novel translational tool for rodent studies in alignment with clinical cardiac imaging AI developments.

肺动脉高压大鼠模型的自动双心室分割和局部心壁运动分析。
基于人工智能的心脏运动测绘为肺动脉高压(PH)疾病进展及其对心脏的影响提供了预测性见解。我们提出了一种自动化的深度学习管道,用于PH啮齿动物模型的双心室分割和3D壁运动分析,以连接临床发展。本研究收集了163个短轴心脏磁共振扫描数据集,这些数据集来自于单碱(MCT)和缺氧(SuHx) PH大鼠,并用于训练用于自动分割的全卷积网络。该模型产生了一个准确的注释(0.92)。采用高分辨率图谱拟合生成三维心脏网格模型,并计算舒张末期和收缩末期之间的区域壁运动。PH大鼠右室运动功能减退明显(-37.7%±12.2 MCT;-38.6%±6.9 SuHx),主要是由于基底纵向和根尖径向运动的丧失。这种自动化的双心室大鼠特异性管道为啮齿动物研究提供了一种有效而新颖的转化工具,与临床心脏成像人工智能的发展相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pulmonary Circulation
Pulmonary Circulation Medicine-Pulmonary and Respiratory Medicine
CiteScore
4.20
自引率
11.50%
发文量
153
审稿时长
15 weeks
期刊介绍: Pulmonary Circulation''s main goal is to encourage basic, translational, and clinical research by investigators, physician-scientists, and clinicans, in the hope of increasing survival rates for pulmonary hypertension and other pulmonary vascular diseases worldwide, and developing new therapeutic approaches for the diseases. Freely available online, Pulmonary Circulation allows diverse knowledge of research, techniques, and case studies to reach a wide readership of specialists in order to improve patient care and treatment outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信