Francisco Gallardo-Chamizo, Román González-Prieto, Vahid Jafari, Noelia Luna-Peláez, Alfred C O Vertegaal, Mario García-Domínguez
{"title":"SUMO2/3 modification of transcription-associated proteins controls cell viability in response to oxygen and glucose deprivation-mediated stress.","authors":"Francisco Gallardo-Chamizo, Román González-Prieto, Vahid Jafari, Noelia Luna-Peláez, Alfred C O Vertegaal, Mario García-Domínguez","doi":"10.1038/s41420-025-02513-w","DOIUrl":null,"url":null,"abstract":"<p><p>Because limited oxygen and glucose supply to tissues is a serious challenge that cells must properly measure to decide between surviving or triggering cell death, organisms have developed accurate mechanisms for sensing and signaling these conditions. In recent years, signaling through posttranslational modification of proteins by covalent attachment of the Small Ubiquitin-like Modifier (SUMO) is gaining notoriety. Enhanced sumoylation in response to oxygen and glucose deprivation (OGD) constitutes a safeguard mechanism for cells and a new avenue for therapeutic intervention. However, indiscriminate global sumoylation can limit the therapeutic potential that a more precise action on selected targets would have. To clear up this, we have conducted a proteomic approach in P19 cells to identify specific SUMO targets responding to OGD and to investigate the potential that these targets and their sumoylation have in preserving cells from death. Proteins undergoing sumoylation in response to OGD are mostly related to transcription and RNA processing, and the majority of them are rapidly desumoylated when restoring oxygen and glucose (ROG), confirming the high dynamics of this modification. Since OGD is linked to brain ischemia, we have also studied cells differentiated into neurons. However, no major differences have been observed between the SUMO-proteomes of proliferating and differentiated cells. We show that the overexpression of the transcription factor SOX2 or the SUMO ligase PIAS4 has a manifest cell protective effect largely depending on their sumoylation, and that maintaining the sumoylation capacity of the coregulator NAB2 is also important to face OGD. Conversely, sumoylation of the pluripotency factor OCT4, which is sumoylated under OGD, and is a target of the SUMO protease SENP7 for desumoylation after ROG, seems to block its cell survival-promoting capacity. Thus, better outcomes in cell protection would rely on the appropriate combination of sumoylated and non-sumoylated forms of selected factors.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"230"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02513-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Because limited oxygen and glucose supply to tissues is a serious challenge that cells must properly measure to decide between surviving or triggering cell death, organisms have developed accurate mechanisms for sensing and signaling these conditions. In recent years, signaling through posttranslational modification of proteins by covalent attachment of the Small Ubiquitin-like Modifier (SUMO) is gaining notoriety. Enhanced sumoylation in response to oxygen and glucose deprivation (OGD) constitutes a safeguard mechanism for cells and a new avenue for therapeutic intervention. However, indiscriminate global sumoylation can limit the therapeutic potential that a more precise action on selected targets would have. To clear up this, we have conducted a proteomic approach in P19 cells to identify specific SUMO targets responding to OGD and to investigate the potential that these targets and their sumoylation have in preserving cells from death. Proteins undergoing sumoylation in response to OGD are mostly related to transcription and RNA processing, and the majority of them are rapidly desumoylated when restoring oxygen and glucose (ROG), confirming the high dynamics of this modification. Since OGD is linked to brain ischemia, we have also studied cells differentiated into neurons. However, no major differences have been observed between the SUMO-proteomes of proliferating and differentiated cells. We show that the overexpression of the transcription factor SOX2 or the SUMO ligase PIAS4 has a manifest cell protective effect largely depending on their sumoylation, and that maintaining the sumoylation capacity of the coregulator NAB2 is also important to face OGD. Conversely, sumoylation of the pluripotency factor OCT4, which is sumoylated under OGD, and is a target of the SUMO protease SENP7 for desumoylation after ROG, seems to block its cell survival-promoting capacity. Thus, better outcomes in cell protection would rely on the appropriate combination of sumoylated and non-sumoylated forms of selected factors.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.