An overview of computational methods in single-cell transcriptomic cell type annotation.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Tianhao Li, Zixuan Wang, Yuhang Liu, Sihan He, Quan Zou, Yongqing Zhang
{"title":"An overview of computational methods in single-cell transcriptomic cell type annotation.","authors":"Tianhao Li, Zixuan Wang, Yuhang Liu, Sihan He, Quan Zou, Yongqing Zhang","doi":"10.1093/bib/bbaf207","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid accumulation of single-cell RNA sequencing data has provided unprecedented computational resources for cell type annotation, significantly advancing our understanding of cellular heterogeneity. Leveraging gene expression profiles derived from transcriptomic data, researchers can accurately infer cell types, sparking the development of numerous innovative annotation methods. These methods utilize a range of strategies, including marker genes, correlation-based matching, and supervised learning, to classify cell types. In this review, we systematically examine these annotation approaches based on transcriptomics-specific gene expression profiles and provide a comprehensive comparison and categorization of these methods. Furthermore, we focus on the main challenges in the annotation process, especially the long-tail distribution problem arising from data imbalance in rare cell types. We discuss the potential of deep learning techniques to address these issues and enhance model capability in recognizing novel cell types within an open-world framework.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf207","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid accumulation of single-cell RNA sequencing data has provided unprecedented computational resources for cell type annotation, significantly advancing our understanding of cellular heterogeneity. Leveraging gene expression profiles derived from transcriptomic data, researchers can accurately infer cell types, sparking the development of numerous innovative annotation methods. These methods utilize a range of strategies, including marker genes, correlation-based matching, and supervised learning, to classify cell types. In this review, we systematically examine these annotation approaches based on transcriptomics-specific gene expression profiles and provide a comprehensive comparison and categorization of these methods. Furthermore, we focus on the main challenges in the annotation process, especially the long-tail distribution problem arising from data imbalance in rare cell types. We discuss the potential of deep learning techniques to address these issues and enhance model capability in recognizing novel cell types within an open-world framework.

单细胞转录组细胞类型注释计算方法综述。
单细胞RNA测序数据的快速积累为细胞类型注释提供了前所未有的计算资源,显著推进了我们对细胞异质性的理解。利用来自转录组学数据的基因表达谱,研究人员可以准确地推断细胞类型,从而激发了许多创新注释方法的发展。这些方法利用一系列策略,包括标记基因、基于相关性的匹配和监督学习,对细胞类型进行分类。在这篇综述中,我们系统地研究了这些基于转录组学特异性基因表达谱的注释方法,并对这些方法进行了全面的比较和分类。此外,我们还重点讨论了标注过程中的主要挑战,特别是在罕见细胞类型中由于数据不平衡而引起的长尾分布问题。我们讨论了深度学习技术解决这些问题的潜力,并在开放世界框架内增强识别新细胞类型的模型能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信