FGeneBERT: function-driven pre-trained gene language model for metagenomics.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Chenrui Duan, Zelin Zang, Yongjie Xu, Hang He, Siyuan Li, Zihan Liu, Zhen Lei, Ju-Sheng Zheng, Stan Z Li
{"title":"FGeneBERT: function-driven pre-trained gene language model for metagenomics.","authors":"Chenrui Duan, Zelin Zang, Yongjie Xu, Hang He, Siyuan Li, Zihan Liu, Zhen Lei, Ju-Sheng Zheng, Stan Z Li","doi":"10.1093/bib/bbaf149","DOIUrl":null,"url":null,"abstract":"<p><p>Metagenomic data, comprising mixed multi-species genomes, are prevalent in diverse environments like oceans and soils, significantly impacting human health and ecological functions. However, current research relies on K-mer, which limits the capture of structurally and functionally relevant gene contexts. Moreover, these approaches struggle with encoding biologically meaningful genes and fail to address the one-to-many and many-to-one relationships inherent in metagenomic data. To overcome these challenges, we introduce FGeneBERT, a novel metagenomic pre-trained model that employs a protein-based gene representation as a context-aware and structure-relevant tokenizer. FGeneBERT incorporates masked gene modeling to enhance the understanding of inter-gene contextual relationships and triplet enhanced metagenomic contrastive learning to elucidate gene sequence-function relationships. Pre-trained on over 100 million metagenomic sequences, FGeneBERT demonstrates superior performance on metagenomic datasets at four levels, spanning gene, functional, bacterial, and environmental levels and ranging from 1 to 213 k input sequences. Case studies of ATP synthase and gene operons highlight FGeneBERT's capability for functional recognition and its biological relevance in metagenomic research.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Metagenomic data, comprising mixed multi-species genomes, are prevalent in diverse environments like oceans and soils, significantly impacting human health and ecological functions. However, current research relies on K-mer, which limits the capture of structurally and functionally relevant gene contexts. Moreover, these approaches struggle with encoding biologically meaningful genes and fail to address the one-to-many and many-to-one relationships inherent in metagenomic data. To overcome these challenges, we introduce FGeneBERT, a novel metagenomic pre-trained model that employs a protein-based gene representation as a context-aware and structure-relevant tokenizer. FGeneBERT incorporates masked gene modeling to enhance the understanding of inter-gene contextual relationships and triplet enhanced metagenomic contrastive learning to elucidate gene sequence-function relationships. Pre-trained on over 100 million metagenomic sequences, FGeneBERT demonstrates superior performance on metagenomic datasets at four levels, spanning gene, functional, bacterial, and environmental levels and ranging from 1 to 213 k input sequences. Case studies of ATP synthase and gene operons highlight FGeneBERT's capability for functional recognition and its biological relevance in metagenomic research.

元基因组学的功能驱动预训练基因语言模型。
由混合多物种基因组组成的宏基因组数据普遍存在于海洋和土壤等不同环境中,对人类健康和生态功能产生重大影响。然而,目前的研究依赖于K-mer,这限制了对结构和功能相关基因背景的捕获。此外,这些方法难以编码具有生物学意义的基因,无法解决宏基因组数据中固有的一对多和多对一关系。为了克服这些挑战,我们引入了FGeneBERT,这是一种新的宏基因组预训练模型,它采用基于蛋白质的基因表示作为上下文感知和结构相关的标记器。FGeneBERT结合了隐藏基因建模来增强对基因间背景关系的理解,以及三重体增强的宏基因组对比学习来阐明基因序列-功能关系。FGeneBERT对超过1亿个宏基因组序列进行了预训练,在四个水平的宏基因组数据集上表现出卓越的性能,包括基因、功能、细菌和环境水平,输入序列范围从1到213 k。ATP合成酶和基因操纵子的案例研究突出了FGeneBERT的功能识别能力及其在宏基因组研究中的生物学相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信