Erin M Lawrence, Amali Cooray, Andrew J Kueh, Martin Pal, Lin Tai, Alexandra L Garnham, Connie S N Li-Wai-Suen, Hannah Vanyai, Quentin Gouil, James Lancaster, Sylvie Callegari, Lauren Whelan, Elizabeth Lieschke, Annabella Thomas, Andreas Strasser, Yang Liao, Wei Shi, Andrew H Wei, Marco J Herold
{"title":"Transcriptomic changes including p53 dysregulation prime DNMT3A mutant cells for transformation.","authors":"Erin M Lawrence, Amali Cooray, Andrew J Kueh, Martin Pal, Lin Tai, Alexandra L Garnham, Connie S N Li-Wai-Suen, Hannah Vanyai, Quentin Gouil, James Lancaster, Sylvie Callegari, Lauren Whelan, Elizabeth Lieschke, Annabella Thomas, Andreas Strasser, Yang Liao, Wei Shi, Andrew H Wei, Marco J Herold","doi":"10.1038/s44319-025-00450-4","DOIUrl":null,"url":null,"abstract":"<p><p>DNMT3A mutations are prevalent in haematologic malignancies. In our mouse model the murine homologue (R878H) of the human 'hotspot' R882H mutation is introduced into the mouse Dnmt3a locus. This results in globally reduced DNA methylation in all tissues. Mice with heterozygous R878H DNMT3A mutations develop γ-radiation induced thymic lymphoma more rapidly than control mice, suggesting a vulnerability to stress stimuli in Dnmt3a<sup>R878H/+</sup> cells. In competitive transplantations, Dnmt3a<sup>R878H/+</sup> Lin<sup>-</sup>Sca-1<sup>+</sup>Kit<sup>+</sup> (LSK) haematopoietic stem/progenitor cells (HSPCs) have a competitive advantage over WT HSPCs, indicating a self-renewal phenotype at the expense of differentiation. RNA sequencing of Dnmt3a<sup>R878H/+</sup> LSKs exposed to low dose γ-radiation shows downregulation of the p53 pathway compared to γ-irradiated WT LSKs. Accordingly, reduced PUMA expression is observed by flow cytometry in the bone marrow of γ-irradiated Dnmt3a<sup>R878H/+</sup> mice due to impaired p53 signalling. These findings provide new insights into how DNMT3A mutations cause subtle changes in the transcriptome of LSK cells which contribute to their increased self-renewal and propensity for malignant transformation.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00450-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNMT3A mutations are prevalent in haematologic malignancies. In our mouse model the murine homologue (R878H) of the human 'hotspot' R882H mutation is introduced into the mouse Dnmt3a locus. This results in globally reduced DNA methylation in all tissues. Mice with heterozygous R878H DNMT3A mutations develop γ-radiation induced thymic lymphoma more rapidly than control mice, suggesting a vulnerability to stress stimuli in Dnmt3aR878H/+ cells. In competitive transplantations, Dnmt3aR878H/+ Lin-Sca-1+Kit+ (LSK) haematopoietic stem/progenitor cells (HSPCs) have a competitive advantage over WT HSPCs, indicating a self-renewal phenotype at the expense of differentiation. RNA sequencing of Dnmt3aR878H/+ LSKs exposed to low dose γ-radiation shows downregulation of the p53 pathway compared to γ-irradiated WT LSKs. Accordingly, reduced PUMA expression is observed by flow cytometry in the bone marrow of γ-irradiated Dnmt3aR878H/+ mice due to impaired p53 signalling. These findings provide new insights into how DNMT3A mutations cause subtle changes in the transcriptome of LSK cells which contribute to their increased self-renewal and propensity for malignant transformation.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.