Cheng Gao, Ruifeng Luo, Cheryl H T Kwong, Jinwei Liu, Mian Tang, Beibei Xie, Tianshun Duan, Ruibing Wang
{"title":"Cancer vaccine from intracellularly gelated tumor cells functionalized with CD47 blockage and damage-associated molecular pattern exposure.","authors":"Cheng Gao, Ruifeng Luo, Cheryl H T Kwong, Jinwei Liu, Mian Tang, Beibei Xie, Tianshun Duan, Ruibing Wang","doi":"10.1016/j.xcrm.2025.102092","DOIUrl":null,"url":null,"abstract":"<p><p>The effectiveness of whole tumor cell vaccines prepared by traditional inactivation methodology is often hindered by insufficient immunogenicity. Here, we report development of a cancer vaccine through the intracellular gelation of tumor cells, combined with CD47 blockade and damage-associated molecular pattern (DAMP) exposure, for effective tumor prevention and treatment. Intracellular hydrogelation preserves the morphology and antigenicity of tumor cells. CD47 blockade and DAMP exposure synergistically enhance the \"eat me\" signals and inhibit the \"don't eat me\" signals on tumor cells, significantly improving their immunogenicity. In the context of tumor prevention and treatment of pre-existing tumors, this vaccine polarizes CD4<sup>+</sup> T cells toward a T<sub>H</sub>1 phenotype, reduces regulatory T cells and T cell exhaustion, and elicits a robust tumor-antigen-specific T cell response. When combined with an immune checkpoint inhibitor, this vaccine demonstrates enhanced efficacy in eradicating established tumors. The successful application of this vaccine using ascites and subcutaneous tumor cells supports the feasibility of developing personalized whole tumor cell vaccines for diverse tumor types.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102092"},"PeriodicalIF":11.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147843/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102092","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effectiveness of whole tumor cell vaccines prepared by traditional inactivation methodology is often hindered by insufficient immunogenicity. Here, we report development of a cancer vaccine through the intracellular gelation of tumor cells, combined with CD47 blockade and damage-associated molecular pattern (DAMP) exposure, for effective tumor prevention and treatment. Intracellular hydrogelation preserves the morphology and antigenicity of tumor cells. CD47 blockade and DAMP exposure synergistically enhance the "eat me" signals and inhibit the "don't eat me" signals on tumor cells, significantly improving their immunogenicity. In the context of tumor prevention and treatment of pre-existing tumors, this vaccine polarizes CD4+ T cells toward a TH1 phenotype, reduces regulatory T cells and T cell exhaustion, and elicits a robust tumor-antigen-specific T cell response. When combined with an immune checkpoint inhibitor, this vaccine demonstrates enhanced efficacy in eradicating established tumors. The successful application of this vaccine using ascites and subcutaneous tumor cells supports the feasibility of developing personalized whole tumor cell vaccines for diverse tumor types.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.