Wasim Akram, Abul Kalam Najmi, M Mumtaz Alam, Syed Ehtaishamul Haque
{"title":"Levocabastine ameliorates cyclophosphamide-induced nephrotoxicity in Swiss albino mice via NF-κB/cleaved caspase-3/TGF-β signaling pathways.","authors":"Wasim Akram, Abul Kalam Najmi, M Mumtaz Alam, Syed Ehtaishamul Haque","doi":"10.1055/a-2552-2486","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclophosphamide (CP) is a potent anticancer drug, but nephrotoxicity is one of the vital organ toxicities that it causes as a side effect. We tried to evaluate the nephroprotective effect of levocabastine (LEV) in CP-induced nephrotoxicity in Swiss albino mice. Mice were given CP 200 mg/kg, i.p., once on the 7<sup>th</sup> day. LEV (0.05 and 0.1 mg/kg, i.p.) and fenofibrate (FF) (80 mg/kg, p.o.) were given daily for 14 days. On the 15<sup>th</sup> day, animals were sacrificed and kidneys were removed for examination. The docking study showed significant binding of LEV and FF against TGF-β1, which is a prime target molecule involved in nephrotoxicity. CP 200 group showed nephrotoxicity in terms of oxidative stress, apoptosis, inflammation, and fibrosis as manifested by decreased levels of SOD, catalase, GSH, blood urea nitrogen/creatinine (BUN/Cr) ratio, and increased TBARS, nitrite, TNF-α, IL-6, TGF-β1, IL-1β, urea, uric acid, creatinine, and BUN. A decrease in body weight (BW) and an increase in kidney weight (KW) with an increased KW/BW ratio was also observed. Cleaved caspase-3 and NF-κB expression was also increased. Histopathological aberrations, like renal corpuscle damage, Bowman's space widening, glomerulus, mesangium cell disintegration, atrophic podocytes, vacuolation, and fibrotic changes were also seen. LEV 0.1 and FF 80 significantly reversed these changes toward normal and showed nephroprotective potential. Thus, seeing the protective effect of LEV on CP-intoxicated mice, we conclude that LEV may be used as an adjuvant with CP in cancer, however, it needs more studies with the direct cancer model to confirm the claim.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2552-2486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclophosphamide (CP) is a potent anticancer drug, but nephrotoxicity is one of the vital organ toxicities that it causes as a side effect. We tried to evaluate the nephroprotective effect of levocabastine (LEV) in CP-induced nephrotoxicity in Swiss albino mice. Mice were given CP 200 mg/kg, i.p., once on the 7th day. LEV (0.05 and 0.1 mg/kg, i.p.) and fenofibrate (FF) (80 mg/kg, p.o.) were given daily for 14 days. On the 15th day, animals were sacrificed and kidneys were removed for examination. The docking study showed significant binding of LEV and FF against TGF-β1, which is a prime target molecule involved in nephrotoxicity. CP 200 group showed nephrotoxicity in terms of oxidative stress, apoptosis, inflammation, and fibrosis as manifested by decreased levels of SOD, catalase, GSH, blood urea nitrogen/creatinine (BUN/Cr) ratio, and increased TBARS, nitrite, TNF-α, IL-6, TGF-β1, IL-1β, urea, uric acid, creatinine, and BUN. A decrease in body weight (BW) and an increase in kidney weight (KW) with an increased KW/BW ratio was also observed. Cleaved caspase-3 and NF-κB expression was also increased. Histopathological aberrations, like renal corpuscle damage, Bowman's space widening, glomerulus, mesangium cell disintegration, atrophic podocytes, vacuolation, and fibrotic changes were also seen. LEV 0.1 and FF 80 significantly reversed these changes toward normal and showed nephroprotective potential. Thus, seeing the protective effect of LEV on CP-intoxicated mice, we conclude that LEV may be used as an adjuvant with CP in cancer, however, it needs more studies with the direct cancer model to confirm the claim.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.