A novel human hepatocyte cell line to study PNPLA3-associated steatotic liver disease.

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gary Huang, Daniel F Wallace, V Nathan Subramaniam
{"title":"A novel human hepatocyte cell line to study PNPLA3-associated steatotic liver disease.","authors":"Gary Huang, Daniel F Wallace, V Nathan Subramaniam","doi":"10.1152/ajpgi.00193.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Patatin-like phospholipase domain-containing protein 3 (<i>PNPLA3</i>) p.I148M is a well-established variant associated with metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Conflicting in vitro and in vivo data about the impact of the variant suggest that the <i>PNPLA3</i> p.I148M variant could be gain- or loss-of-function, or neomorphic. Most in vitro models used to study MASLD are cancer-derived hepatoma cell lines such as HepG2 and Huh7, which already endogenously express the homozygous <i>PNPLA3</i> p.I148M variant. This highlights the need to develop models that better reflect disease and allow comparisons with wild-type cells. Clustered regularly interspaced short palindromic repeats (CRISPR) prime editing was used to introduce the <i>PNPLA3</i> p.I148M gene variant into a healthy-derived immortalized human hepatocyte (IHH) cell line to generate a new in vitro model of MASLD that would better reflect PNPLA3-associated MASLD/MASH. Heterozygous and homozygous <i>PNPLA3</i> p.I148M IHH cell lines were generated and validated with Sanger sequencing. Mutant cell lines exhibited lipid accumulation, increased cluster of differentiation 36 (<i>CD36</i>) gene expression and a decline in carnitine palmitoyltransferase 1 alpha (<i>CPT1A</i>) gene expression compared with the wild-type control, basally or in the presence of free fatty acid (FFA)-induced steatosis. The homozygous <i>PNPLA3</i> p.I148M IHH cell line also demonstrated reduced <i>PNPLA3</i> gene and protein expression compared with the wild-type control. We have developed a new human hepatocyte cell line and in vitro model to help understand PNPLA3-associated steatotic liver disease and provide a new resource for developing potential therapeutics.<b>NEW & NOTEWORTHY</b> We have developed a novel in vitro model for studying the <i>PNPLA3</i> p.I148M variant in steatotic liver disease using a normal, healthy-derived hepatocyte cell line, which does not endogenously express the variant. We show that carrying the homozygous <i>PNPLA3</i> p.I148M variant results in reduced PNPLA3 gene and protein expression, more lipid accumulation, increased lipid uptake, and reduced mitochondrial lipid oxidation-associated gene expressions and altered expression of genes associated with lipid synthesis and transport.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G1-G16"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00193.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Patatin-like phospholipase domain-containing protein 3 (PNPLA3) p.I148M is a well-established variant associated with metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Conflicting in vitro and in vivo data about the impact of the variant suggest that the PNPLA3 p.I148M variant could be gain- or loss-of-function, or neomorphic. Most in vitro models used to study MASLD are cancer-derived hepatoma cell lines such as HepG2 and Huh7, which already endogenously express the homozygous PNPLA3 p.I148M variant. This highlights the need to develop models that better reflect disease and allow comparisons with wild-type cells. Clustered regularly interspaced short palindromic repeats (CRISPR) prime editing was used to introduce the PNPLA3 p.I148M gene variant into a healthy-derived immortalized human hepatocyte (IHH) cell line to generate a new in vitro model of MASLD that would better reflect PNPLA3-associated MASLD/MASH. Heterozygous and homozygous PNPLA3 p.I148M IHH cell lines were generated and validated with Sanger sequencing. Mutant cell lines exhibited lipid accumulation, increased cluster of differentiation 36 (CD36) gene expression and a decline in carnitine palmitoyltransferase 1 alpha (CPT1A) gene expression compared with the wild-type control, basally or in the presence of free fatty acid (FFA)-induced steatosis. The homozygous PNPLA3 p.I148M IHH cell line also demonstrated reduced PNPLA3 gene and protein expression compared with the wild-type control. We have developed a new human hepatocyte cell line and in vitro model to help understand PNPLA3-associated steatotic liver disease and provide a new resource for developing potential therapeutics.NEW & NOTEWORTHY We have developed a novel in vitro model for studying the PNPLA3 p.I148M variant in steatotic liver disease using a normal, healthy-derived hepatocyte cell line, which does not endogenously express the variant. We show that carrying the homozygous PNPLA3 p.I148M variant results in reduced PNPLA3 gene and protein expression, more lipid accumulation, increased lipid uptake, and reduced mitochondrial lipid oxidation-associated gene expressions and altered expression of genes associated with lipid synthesis and transport.

一种新的人类肝细胞细胞系用于研究pnpla3相关的脂肪变性肝病。
patatin样磷脂酶结构域蛋白3 (PNPLA3) p.I148M是一种与代谢功能障碍相关的脂肪性肝病(MASLD)和代谢功能障碍相关的脂肪性肝炎(MASH)相关的已知变异。关于该变体影响的体外和体内数据相互矛盾,表明PNPLA3 p.I148M变体可能是功能获得或功能丧失,或新形态的。用于研究MASLD的大多数体外模型是癌源性肝癌细胞系,如HepG2和Huh7,它们已经内源性表达纯合子PNPLA3 p.I148M变体。这突出了开发更好地反映疾病并允许与野生型细胞进行比较的模型的必要性。利用聚类规则间隔短回文重复序列(CRISPR)引物编辑技术,将PNPLA3 p.I148M基因变体引入健康来源的永生化人肝细胞(IHH)细胞系中,生成新的MASLD体外模型,该模型能更好地反映PNPLA3相关的MASLD/MASH。与野生型对照相比,突变细胞系表现出脂质积累,CD36(分化簇36)基因表达增加,CPT1A(肉碱棕榈酰基转移酶1A)和PPARA(过氧化物酶体增殖物激活受体α)基因表达下降。参与脂质合成或转运的基因表达的变化表明PNPLA3 p.I148M参与了这些途径和过程的失调。与野生型对照相比,纯合子PNPLA3 p.I148M IHH细胞系也显示出PNPLA3基因和蛋白表达的减少。我们开发了一种新的人类肝细胞细胞系和体外模型,以帮助了解pnpla3相关的脂肪变性肝病,并为开发潜在的治疗方法提供新的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信