AI-enabled opportunistic measurement of liver steatosis in coronary artery calcium scans predicts cardiovascular events and all-cause mortality: an AI-CVD study within the Multi-Ethnic Study of Atherosclerosis (MESA).
Morteza Naghavi, Kyle Atlas, Anthony Reeves, Chenyu Zhang, Jakob Wasserthal, Thomas Atlas, Claudia I Henschke, David F Yankelevitz, Javier J Zulueta, Matthew J Budoff, Andrea D Branch, Ning Ma, Rowena Yip, Wenjun Fan, Sion K Roy, Khurram Nasir, Sabee Molloi, Zahi Fayad, Michael V McConnell, Ioannis Kakadiaris, David J Maron, Jagat Narula, Kim Williams, Prediman K Shah, George Abela, Rozemarijn Vliegenthart, Daniel Levy, Nathan D Wong
{"title":"AI-enabled opportunistic measurement of liver steatosis in coronary artery calcium scans predicts cardiovascular events and all-cause mortality: an AI-CVD study within the Multi-Ethnic Study of Atherosclerosis (MESA).","authors":"Morteza Naghavi, Kyle Atlas, Anthony Reeves, Chenyu Zhang, Jakob Wasserthal, Thomas Atlas, Claudia I Henschke, David F Yankelevitz, Javier J Zulueta, Matthew J Budoff, Andrea D Branch, Ning Ma, Rowena Yip, Wenjun Fan, Sion K Roy, Khurram Nasir, Sabee Molloi, Zahi Fayad, Michael V McConnell, Ioannis Kakadiaris, David J Maron, Jagat Narula, Kim Williams, Prediman K Shah, George Abela, Rozemarijn Vliegenthart, Daniel Levy, Nathan D Wong","doi":"10.1136/bmjdrc-2024-004760","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>About one-third of adults in the USA have some grade of hepatic steatosis. Coronary artery calcium (CAC) scans contain more information than currently reported. We previously reported new artificial intelligence (AI) algorithms applied to CAC scans for opportunistic measurement of bone mineral density, cardiac chamber volumes, left ventricular mass, and other imaging biomarkers collectively referred to as AI-cardiovascular disease (CVD). In this study, we investigate a new AI-CVD algorithm for opportunistic measurement of liver steatosis.</p><p><strong>Methods: </strong>We applied AI-CVD to CAC scans from 5702 asymptomatic individuals (52% female, age 62±10 years) in the Multi-Ethnic Study of Atherosclerosis. Liver attenuation index (LAI) was measured using the percentage of voxels below 40 Hounsfield units. We used Cox proportional hazards regression to examine the association of LAI with incident CVD and mortality over 15 years, adjusted for CVD risk factors and the Agatston CAC score.</p><p><strong>Results: </strong>A total of 751 CVD and 1343 deaths accrued over 15 years. Mean±SD LAI in females and males was 38±15% and 43±13%, respectively. Participants in the highest versus lowest quartile of LAI had greater incidence of CVD over 15 years: 19% (95% CI 17% to 22%) vs 12% (10% to 14%), respectively, p<0.0001. Individuals in the highest quartile of LAI (Q4) had a higher risk of CVD (HR 1.43, 95% CI 1.08 to 1.89), stroke (HR 1.77, 95% CI 1.09 to 2.88), and all-cause mortality (HR 1.36, 95% CI 1.10 to 1.67) compared with those in the lowest quartile (Q1), independent of CVD risk factors.</p><p><strong>Conclusion: </strong>AI-enabled liver steatosis measurement in CAC scans provides opportunistic and actionable information for early detection of individuals at elevated risk of CVD events and mortality, without additional radiation.</p>","PeriodicalId":9151,"journal":{"name":"BMJ Open Diabetes Research & Care","volume":"13 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997824/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Diabetes Research & Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjdrc-2024-004760","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: About one-third of adults in the USA have some grade of hepatic steatosis. Coronary artery calcium (CAC) scans contain more information than currently reported. We previously reported new artificial intelligence (AI) algorithms applied to CAC scans for opportunistic measurement of bone mineral density, cardiac chamber volumes, left ventricular mass, and other imaging biomarkers collectively referred to as AI-cardiovascular disease (CVD). In this study, we investigate a new AI-CVD algorithm for opportunistic measurement of liver steatosis.
Methods: We applied AI-CVD to CAC scans from 5702 asymptomatic individuals (52% female, age 62±10 years) in the Multi-Ethnic Study of Atherosclerosis. Liver attenuation index (LAI) was measured using the percentage of voxels below 40 Hounsfield units. We used Cox proportional hazards regression to examine the association of LAI with incident CVD and mortality over 15 years, adjusted for CVD risk factors and the Agatston CAC score.
Results: A total of 751 CVD and 1343 deaths accrued over 15 years. Mean±SD LAI in females and males was 38±15% and 43±13%, respectively. Participants in the highest versus lowest quartile of LAI had greater incidence of CVD over 15 years: 19% (95% CI 17% to 22%) vs 12% (10% to 14%), respectively, p<0.0001. Individuals in the highest quartile of LAI (Q4) had a higher risk of CVD (HR 1.43, 95% CI 1.08 to 1.89), stroke (HR 1.77, 95% CI 1.09 to 2.88), and all-cause mortality (HR 1.36, 95% CI 1.10 to 1.67) compared with those in the lowest quartile (Q1), independent of CVD risk factors.
Conclusion: AI-enabled liver steatosis measurement in CAC scans provides opportunistic and actionable information for early detection of individuals at elevated risk of CVD events and mortality, without additional radiation.
期刊介绍:
BMJ Open Diabetes Research & Care is an open access journal committed to publishing high-quality, basic and clinical research articles regarding type 1 and type 2 diabetes, and associated complications. Only original content will be accepted, and submissions are subject to rigorous peer review to ensure the publication of
high-quality — and evidence-based — original research articles.